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Figure 7.1: Cross section and top view of integrated Schottky diode,

This chapter is about the metal-semiconductor junction and two Important applications:
Schottky barrier diodes (or simply Schottky diodes) and ohmic contacts. Metal-semiconductor
Jjunctions are present in virtually all microelectronic devices. Their most pervasive form is ohmic
contacts which are used to provide electrical access to devices from the outside world. However,
under the right conditions, metal-semiconductor junctions can display rectifying behavior, just
like PN junctions. This is exploited to make Schottky diodes. The uniqueness of the Schottky
diode, in comparison with the PN diode, is its fast dynamic response. This arises from the fact
that the Schottky diode is largely a majority-carrier-type device. Because of this, Schottky diodes
have found use in many analog, digital, power and communications applications.

A top view and a cross-sectional view of an integrated Schottky diode is shown in Fig. 7.1.
It consists of an n-type well on a p-type substrate. A metal layer is in direct contact with the
n-well. If appropriately designed, this Junction exhibits rectifying characteristics. The contact
to the body is made through an n*region with a metal contact applied to it. The design here
is optimized to make an ohmic contact that exhibits minimum contact resistance. One of the
goals of this chapter is to understand when a metal-semiconductor junction shows rectifying
characteristics and when it exhibits ohmic behavior. For the diode shown in this figure, the
metal is referred to as the anode and the n-type semiconductor is the cathode. It is also possible
to make metal/p-type Schottky diodes. In this case, the metal is the cathode and the p-type
semiconductor is the anode.

This chapter studies in detail the physics of the metal-semiconductor Jjunction and its use in
Schottky diodes and ohmic contacts. It is organized as follows. We start by defining the notion
of an "ideal Schottky diode.” This is a hypothetical device of simplified geometry and physics
that helps us focus on the most important issues. The metal-semiconductor Jjunction in thermal
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Figure 7.2: Left: circuit symbol of Schottky diode. Right: sketch of ideal Schottky diode.

equilibrium is discussed next. The treatment relies heavily on the energy band diagram view
of semiconductors and metals. The consequences of applying a voltage to a Schottky diode are
discussed next, first qualitatively and then quantitatively. We study both the current-voltage and
the charge-voltage characteristics of Schottky diodes. We then discuss equivalent circuit models
for Schottky diodes and some of the most significant non-ideal and second order effects. We
devote a few pages to a few important technology and design issues in practical Schottky diodes.
The chapter finishes with a detailed discussion of ohmic contacts, their physics and key design
issues. A number of Advanced Topics at the end of the chapter allow the student to deepen
understanding in several areas.

7.1 The ideal Schottky diode

We start this Chapter by defining the concept of an ideal Schottky diode. This is a device with
simplified geometry and physics and no parasitics. The ideal Schottky diode captures the essence
of the rectifying metal-semiconductor junction and hides some of its complexities. Later on in
this chapter, we will relax some of the assumptions that we malke here and we will also study the
most significant non-idealities.

The circuit symbol and a sketch of an ideal Schottky diode are shown in Fig. 7.2. In this
book, the ideal Schottky diode consists of an n-type semiconductor region with a Schottky metal
on top (we use this term to refer to the metal of a metal-semiconductor junction that exhibits
rectifying characteristics). The semiconductor is contacted by means of an ideal ohmic contact
at the bottom. As a short-hand, when we simply talk about "the metal” in the context of a
Schottky diode, we refer to the Schottky metal that yields the rectifying characteristics. The
metal that makes the ohmic contact is usually referred to as ”ohmic metal” or simply ”contact.”

In the analysis of the ideal Schottky diode, we are going to make the following assumptions:

e All carrier flow is one dimensional. There are no 2D or 3D effects.
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* The metal-semiconductor interface is smooth with ideal bonding for the semiconductor
atoms preserved.

* The doping level in the semiconductor is uniform throughout,

e We assume that non-degenerate carrier statistics apply in all situations.

¢ We assume that the Schottky barrier height is given by the difference between the work func-
tion of the metal and the electron affinity of the semiconductor (for n-type semiconductor,

this is explained below). This assumption is discussed in Sec. AT7.1.

e We assume that the alignment between metal and semiconductor work functions is such
that in equilibrium, there is a depletion region on the semiconductor side.

o We treat the metal-semiconductor Jjunction under the depletion approximation. We consi der
the rest of the semiconductor as quasi-neutral,

o We disregard the minority carriers and we therefore neglect generation and recombination.

e We ignore any resistance effects associated with the Schottky metal, the semiconductor or
the ohmic contact (we study the impact of parasitic resistance in Sec. T6.1).

® We assume ideal ohmic contact as defined in Sec. 5.2.9.

We ignore any edge effects or other effects associated with the sidewalls of the device.

Fig. 7.2 defines the axis that we will use in our analysis of the Schottky diode. We place its
origin at the metallurgical interface between the metal and the semiconductor. The extent of the
semiconductor is w,,. The area of the device is A,

For a metal/n-semiconductor Junction, such as the one depicted in Fig. 7.2, the voltage
polarity is usually defined as in the figure. With this polarity, when V' > 0, the Schottky diode is
in forward bias. When V < 0, the Schottky diode is in reverse bias. The metal is the anode and
the semiconductor is the cathode. Everything is reversed for a metal /p-semiconductor junction.

7.2 Ideal Schottky diode in thermal equilibrium

A metal-semiconductor junction is an artificial structure made out of two rather dissimilar mate-
rials. Whenever two materials with different properties are brought together in intimate contact,
charge redistribution takes place. This has often fascinating consequences. The PN Junction that
was studied in the previous chapter was an example of this. The metal-semiconductor junction
Is unique in a number of ways. Before studying in detail the metal-semiconductor junction, a
number of important concepts can be better grasped in a simpler metal-metal junction.
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Figure 7.3: Energy band diagrams illustrating two different metals with different work functions: a) far apart
from each other. b) just before contact is established, c) in intimate contact.

7.2.1 A simpler system: a metal-metal junction

Fig. 7.3 illustrates the evolution of the electronic structure of two different metals as they are
brought in contact to form a metal-metal junction. Fig. 7 .3a) shows the energy band diagram
of each metal when placed far apart from each other. Each metal has its own peculiar energy
distribution of bands and bandgaps. The work functions (the minimum energy required to free
up an clectron) is also different in the two materials.

As the two metals are brought together, some electrons in the low work function metal, metal 2
on the right of Fig. 7.3, are presented with empty states at lower energy in the high work function
metal 1 (Fig. 7.3b). As soon as contact is established, electrons from metal 2 rush to metal 1 to
lower their energy. This makes metal 1 negatively charged and metal 2 positively charged. As
time goes on and electron flow continues, an electric field builds up across the interface that in
due time stops further electron migration. Equilibrium is eventually reached.
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Figure 7.4: Volume charge density, electric field, electrostatic potential, and potential energy corresponding to
the metal-metal junction of Fig. 7.3 in equilibrium.

v

This is a dynamic equilibrium situation. The initial tendency of electrons to flow from metal
2 to metal 1 in order to lower their energy is precisely counterbalanced by the electric field that
gets set up at the interface. This electric field originates on the dipole of charge that is formed
as a consequence of electron migration. This is graphed in Fig. 7.4. The eclectric field has a
sign such that it opposes further electron transfer from metal 2 to metal 1. In Fig. 7.4, € is
negative as a consequence of the choice of axis. The electric field in turn results in a potential
difference between the two materials that is called the built-in potential, ¢p;. The potential energy
associated with the electric field must be added to the energy band diagram. As a consequence,
all the bands bend with a shape that is identical to the electrostatic potential with a minus sign
(Fig. 7.3c).

When the two metals are sufficiently far apart, they can be considered as two different elec-
tronic systems with their own separate Fermi levels. The moment the two materials are brought,
in intimate contact and electrons are allowed to freely flow from one to the other, they constitute
a new unified electronic system. In consequence, when thermal equilibrium is established, the
Fermi level must be flat everywhere. This is the situation depicted in Fig. 7.3c).
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At this point it is legitimate to ask: what happens to the work function? How much energy
does it take to extract an electron from the new combined electronic system? The best way to
answer these questions is to carry out a fictitions photoelectric effect experiment, as sketched
in Fig. 7.5. Suppose we have a tunable light source that can emit a spatially narrow beam
of photons of any arbitrary energy. Suppose also that we have a way to detect when electrons
are extracted from any one of the metals. If the beam of light has a narrow spatial spread, we
can measure the local work function by shining light at a spot of the surface of the metal and
observing the light energy at which electrons start escaping from that location.

When the two metals are apart, the energy required to free up an electron is well defined, i.e.,
Wsi for metal 1 and Wyyo for metal 2. When the metals are in contact the situation is not so
clear. Sufficiently far away from the interface, each metal should not be aware of the presence of
the other. Since the nature of each one has not been modified by bringing them into contact, it
is then reasonable that the threshold light energy that frees up an electron remains unchanged.
Far away from the interface, then, the work function of metal 1 is still Wy and for metal 2
it is Ware. As we approach the interface, electrons have migrated from metal 2 to metal 1. In
consequence, the threshold photon-energy of metal 2 slowly increases as we approach metal 1,
that is, we have to “dig deeper” into the electronic structure of metal 2 to find electrons that
can be freed up. When we cross the interface into metal 1, previously empty electronic states are
now full. As a result, the energy required to free up some of these electrons will be smaller than
Wari. As we go further and further away from the interface, the local work function approaches
War1. This is sketched in Fig. 7.5.

We can then define, without any ambiguity, a local work function. We find that this parameter
changes smoothly from one metal to the other and sufficiently far away from the interface it
recovers the value that the metal exhibits when in isolation. It is clear that this local work function
cannot change abruptly in space. If it did, electrons at the location where the discontinuity exists
could move a small distance and easily lower their energy. This would not be an equilibrium
situation.

Through the local work function, we can also define a local vacuum energy, E, as in in Fig.
7.3. At any point in space, F, is located at an energy above the Fermi level equal to the local
work function. The shape of the local vacuum energy is identical to the potential energy of Fig.
7.4 and the total difference in energy of the local vacuum level across the structure is Wy — Waya.
This allows us to conclude that the built-in potential of this structure is ¢p = (Warn — War2)/g.

A rigorous solution of the electrostatics of a metal-metal junction in thermal equilibrium,
although not being very difficult to carry out, is of no great use to us. The one aspect of it that is
important is the length scale of the space charge regions at the interface between the two metals.
Because of the high electron density of a metal (about ~ 10%? ™), a metal does not tolerate
net charge in its bulk. If there is no overall charge neutrality in a metal, its net charge is confined
to a thin sheet at the surface. In our case, this is the metal/metal interface. The space charge
region at the interface is only a fraction of a nm thick, much smaller than all scale lengths of
interest in microelectronic devices. For all purposes, it is then safe to consider this as a delta
function and that is what we will do in this book.

We can now turn to the metal-semiconductor junction, the main topic of this chapter.



416 Integrated Microelectronic Devices: Physics and Modeling

Figure 7.5: The photoelectric effect can be used to define a local work function in a metal-metal junction. Top:
with the metals isolated, the threshold energy for extracting an electron is equal to the regular work functions Wy,
and Wasz. Bottom: in a metal-metal junction, the local work function changes smoothly across the interface from
W to Wara.

7.2.2 Energy band lineup of metal-semiconductor junction

A metal-semiconductor junction shares a lot of similarities with the metal-metal junction. While
a metal is characterized by a partially full band, the most prominent feature of the energy band
structure of a semiconductor is a complete band separated by a bandgap from the next empty
band. Depending on the doping concentration and type of the semiconductor, the Fermi level
can be located just about anywhere in the bandgap; it can even penetrate to some extent into
the conduction or valence bands at high doping levels. In consequence, the detailed charge
redistribution that takes place between a metal and a semiconductor when they are brought in
intimate contact depends on the doping type and doping level of the semiconductor. So will the
electrical properties of the resulting metal-semiconductor junctions.

Fig. 7.6 shows the energy band diagram of a typical metal and a non-degenerate n-type
semiconductor. As in a metal, a semiconductor is characterized by a work function Ws. In a
semiconductor, the work function is defined as the energy difference between the vacuum level
and the Fermi level in equilibrium. Because of this, Ws is a function of the doping level. In
order to completely specify the relationship between the work function and the doping level in
a semiconductor, an additional parameter is required. This is the electron affinity, y, which
measures the energy difference between the vacuum level and the edge of the conduction band. y
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Figure 7.6: Energy band diagrams illustrating a metal and an n-type semiconductor: a) far apart from each
other, b) in intimate contact.

is a property of the host semiconductor. For Si, for example, x = 4.04 eV at room temperature.
The relationship between the electron affinity and the semiconductor work function is given by:

Ws = x +qpn (7.1)

where gy, is the energy difference between E. and Ep and is calculated from the doping level as
discussed in Ch. 2.

Figure 7.6 illustrates a case in which the work function of the metal is higher than the work
function of the semiconductor. This is the most typical situation for Si. In this instance, when
the metal and the semiconductor are brought together, the difference in work functions results
in electron redistribution in which electrons preferentially flow from the semiconductor to the
metal. As in the metal-metal junction, this creates a charge dipole at the interface of the two
materials. The semiconductor side becomes positively charged as a consequence of the exposed
ionized donors, while the metal gets flooded by additional electrons and becomes negatively
charged. The resulting energy band diagram in equilibrium is shown at the bottom of Fig. 7.6.
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This energy band diagram is qualitatively identical to the one drawn in Fig. 7.3 for the
metal-metal junction. Fundamental parameters of the semiconductor, such as y and Ey, are not
affected by the presence of the metal. Additionally, sufficiently far away from the interface, the
semiconductor and the metal are not upset by the presence of the junction. In consequence, their
properties must remain the same as when they were isolated. For the semiconductor, that means
that far away on the right, Er is located at a distance W below the vacuum level and the energy

difference between Er and E. is unchanged from the isolated case. In consequence, the built-in
potential of this junction is given by:

e (—i(WM —Ws) (7.2)

What is substantially different in the case of the metal-semiconductor junction with respect
to the metal-metal one is the relative band bending in the metal and the semiconductor. Since
a metal has a carrier concentration several orders of magnitude higher than a semiconductor,
the potential distribution across a metal-semiconductor Junction is extremely asymmetric, with
the semiconductor absorbing the great majority of it. The metal energy bands bend a negligible
fraction of g¢y; over a very small distance from the interface. In contrast, the bands in the
semiconductor bend up substantially over a much longer length scale. The closer we get to the
interface, the further away the conduction band is from the Fermi level and the fewer electrons
there are. The detailed shape of the band bending in the semiconductor will be calculated in the
following section. We will see that it is nearly parabolic.

At the metal-semiconductor interface, an electron with an energy equal to the Fermi level has
an abrupt barrier to overcome in order to get from the metal to the semiconductor. This energy
barrier plays a crucial role in the operation of metal-semiconductor junctions out of equilibrium
and is called the Schottky barrier height. From Fig. 7.6, it is easy to see that:

9pBn =Wy — x (7.3)

This equation says that the Schottky barrier height is a property of the metal-semiconductor pair
and it is not a function of the doping level of the semiconductor. This is often referred to as the
Schottky-Mott relation.

Combining Egs. 7.3, 7.1 and 7.2, we obtain an expression for the built-in potential of a
Schottky diode in terms of the Schottky barrier height:

qdbi = qPBn — @ (7.4)

Fig. 7.7 shows the energy band diagram for a typical metal/p-semiconductor Junction. With
the two materials far apart, the Fermi level in the metal is higher than the Fermi level in the
semiconductor. In this instance, as we bring the materials together, electrons flow from the
metal to the semiconductor. On the metal side, this leads to a surface with a deficiency of
electrons, that is, positively charged. Since the semiconductor is p-type, metal electrons rush
to the semiconductor and preferentially occupy the holes at the top of the valence band. In
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Figure 7.7: Energy band diagrams illustrating a metal and an p-type semiconductor: a) far apart from each
other, b) in intimate contact.

consequence, there are fewer holes there when equilibrium is established and the semiconductor
becomes negatively charged.

In thermal equilibrium, the bands in the semiconductor bend down reflecting the reduction
of holes on the semiconductor side as the interface is approached. There is also an energy barrier
that appears at the metal-semiconductor interface. It is customary to refer to it as the Schottky
barrier height for holes gy, (always a positive quantity). From the figure, we can see that gopp
is given by:

geBp =X+ E;g— Wy (7.5)

This is also independent of doping. In terms of gpgp, ¢pi is:

qdbi = qPBp — 9¥p (7.6)

where gy, is the energy distance between Er and E,.
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An interesting property of a metal-semiconductor pair is obtained by adding Egs. 7.3 and
7.5

4P Bn + qepp = Eg (77)

The Schottky barrier heights of a metal on a semiconductor when p-type doped and n-type
doped add up to the bandgap of the semiconductor. This is a handy relationship that can be ex-
ploited in practice if we are missing the Schottky barrier height for a certain metal-semiconductor
pair but we have its value for the same system with the contrary polarity of the semiconductor.

Before we move on, it is important to note that Egs. 7.3 and 7.5 should not be used to
estimate the Schottky barrier height of a metal /semiconductor pair. These equation suggest that
the Schottky barrier height is a fundamental property of the bulk materials involved. In practice,
it is found that for a given metal-semiconductor pair, ¢, and qp g, depend on the details of the
fabrication process and the crystalline orientation of the semiconductor. This strongly suggests
that the Schottky barrier height is affected to some extent by the interfacial chemistry and is
not just a property of the bulk materials. For many metals, the predictions of Eq. 7.3 can be
significantly off. More details of this are given in Appendix ATT7.1. The practical approach is
not to rely on Eq. 7.3 or 7.5 but rather design experiments to measure the actual value of the
Schottky barrier height of interest. Egs. 7.4 and 7.6 remain correct and can be safely used to
relate the built-in potential, the Schottky barrier height and the relative location of the Fermi
level in the semiconductor. As is shown in Appendix AT7.1, Eq. 7.7 also remains correct,

In the next section, we study the electrostatics of the metal-semiconductor junction in thermal
equilibrium in a more quantitative way.

7.2.3  Electrostatics of metal-semiconductor Jjunction in equilibrium

The goal of this section is to develop a first-order model for the electrostatics of a metal /semiconductor
junction in thermal equilibrium, that is, to calculate the volume charge density, electric field,
electrostatic potential and carrier concentration distributions in space across the structure. This
understanding is essential to deal with situations out of equilibrium later on in this chapter. This
section treats the metal /n-semiconductor junction. The procedure is similar to the metal /p-type
semiconductor junction and leads to very similar equations.

The problem to be solved is a typical one in semiconductor devices and it resembles the PN
diode. In most metal-semiconductor Junctions, the net volume charge density in the semicon-
ductor in the vicinity of the metal is high enough that it cannot be considered quasi-neutral
any longer. Because of this, the region close to the metal-semiconductor interface is called the
space-charge region, or SCR. Unlike the relatively gradual non-uniformly doped distributions
that we studied in Ch. 4, a space charge region many times appears in regions in which abrupt
transitions occur. It is the case, for example, in a PN junction and also that of a metal-oxide-
semiconductor structure, as we will describe later on in this book. Sufficiently far away from the
metal-semiconductor interface, in the bulk of the semiconductor, charge neutrality should prevail.
This region is called the quasi-neutral region or QNR. The boundary between the SCR and the
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QNR is fairly sharp.

The first step in thinking about the electrostatics of this problem is to consider the volume
charge density, p,. In general, for a metal/n-semiconductor junction, and in the absence of a
substantial concentration of compensating acceptors, p, is given by:

Po = q(po — no + ND) (7.8)

Deep in the quasi-neutral bulk of the semiconductor p, ~ 0. As we advance towards the
metal-semiconductor interface, n, drops and p, consequently rises (the n,p, product must remain
constant in equilibrium). This makes p, positive. Since p, starts from an extremely small value
in the QNR, the drop in n, is most significant. If the built-in potential of the junction is not too
small, as we get closer to the interface, we will reach a point in which n, has become negligible
in front of Np. Similarly, if ¢ is not too high either, p, might never become significant next
to Np. When all this happens, p, ~ ¢Np. Because of the exponential dependence of n, on ¢,
the transition between p, ~ 0 and p, =~ ¢Np is actually quite sharp. This suggests a simple
approximation to the charge distribution in the semiconductor:

po(x) =~ qNp inSCR: 0<z < g (7.9)
polx) 0 inQNR: zg <z (7.10)

12

This assumption of a box-like shape for the charge distribution is the depletion approzimation,
something that we have already become familiar with in the analysis of the PN diode. Establishing
the location of the boundary between the SCR and the QNR, z4 in Egs. 7.9 and 7.10, is one of
the goals of the calculations that follow. This charge distribution is shown in Fig. 7.8.

Integration of this volume space-charge density distribution yields the electric field profile:

N,
EolT) = qTD(;B — Tq) inSCR: 0 <z < zq (%)
Eolx)

12

0 in QNR: zg < x (7.12)

This field is negative because it points from the semiconductor into the metal, contrary to our
choice of axis, as shown in Fig. 7.8.

One more integration yields the electrostatic potential:

N
dulz) = —qg—:}(x? — 2zq4z + 22) inSCR: 0 <2< ay (7.13)

dolz) = 0 in QNR: zy <z (7.14)

where we have selected ¢,(bulk) = 0 as the reference for potentials. The potential is also graphed
in Fig. 7.8.
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Figure 7.8: Volume charge density, electric field, electrostatic potential, and equilibrium carrier concentrations
across metal /n-semiconductor junction.

The extension of the depletion region, x4, is obtained by demanding that the total potential
difference across the semiconductor be ¢,; which we know from energy arguments (Eq. 7.4). With
our selected potential reference, that implies that ®0(0) = —¢y;. Solving for 2,4 in Eq. 7.13, we

get:
2€p;
Ty = ‘qu\f; (7.15)

The maximum electric field occurs at the interface and it is given by:

Npzx 2N i
1 ] e TV DR \/q_f;ﬂ (7.16)

& €
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These two equation state that the higher the doping level, the thinner the depletion region is
and the higher the electric field is at the metal /semiconductor interface. This is a consequence
of the electrostatics of a charge dipole. To attain a certain potential build-up, a more spatially
compact charge dipole requires a higher charge and results in a bigger field inside the dipole.
This is what happens in the depletion region of a metal-semiconductor junction when the doping
level in the semiconductor increases.

It is interesting to realize that Eqs. 7.15 and 7.16 are identical to that of a highly asymmetric
PTN junction (Eqgs. 6.21 and 6.22, respectively). This makes sense as in that case, we learned
that the electrostatic potential drops entirely in the lowly doped n-type semiconductor. That is
also the case in the metal-semiconductor junction studied here.

Exercise 7.1: Culculate the built-in potential, the depletion-region thickness and the mazimum
electric field at 300 K of an Al-Si junction with qpp, = 0.68 €V in thermal equilibrium. The
doping level of the 8iis Np = 1017 em—3.

For Np = 10'7 e¢m ™3 Si at 300 K, the distance between the the conduction band and the Fermi
level is g, = 0.15 eV. Using Eq. 7.4, ¢, is:

®bi = @Bn — Pn =053 V

The depletion region thickness can be obtained from Eq. 7.15:

| 2€0bi \/2 x 1.04 x 10712 F/em x 0.53 V 6
Zd aNp 16 x10-1° C x 1017 om—3 8.3 x 107" em = 83 nm

The maximum electric feld occurs at the metal-semiconductor interface. From Eq. 7.16, it is given
by:

_gNpzg _16x107° Ox 10" em™® x 8.3x 107%em _ &
180._ma::| = . e 1.04 < 10-12 F/C.'ITL = 1.4 x 10 V/C??I.

With the electrostatic potential now completely determined, we are in a position to calculate
the equilibrium carrier concentrations and verify our initial assumptions. For this, we use the
Boltzmann relations, which for our choice of potential reference are written as:

no(r) = Npexp q(i:;m) (7.17)
2 rene
polx) = ;; exp %(x) (7.18)

with ¢,(x) given by Eqs. 7.13-7.14. n,(x) and p,(zx) are also sketched in Fig. 7.8.

We can now verify the assumptions that were made in formulating the depletion approxi-
mation. First. in going from 7.8 to 7.9, we neglected the equilibrium hole concentration. The
location where p, is highest, as can be seen in Fig. 7.8, is at the metal-semiconductor interface.
At that point,
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n? qOpi —(E, -
Po(0) = }—\;;exp ;ﬂ': = Nﬂexp—(-sﬁ—%%”—) (7.19)

where we have also used Eqgs. 7.4 and 2.39. This equation implies that for p,(0) to be negligible
next to Np, g¢p, must not get too close to E4. As the exercise below shows, for typical doping
levels and common metals, this condition is readily satisfied.

We also neglected n, next to Np everywhere in the depletion region. We must make sure that
at the interface, n, is sufficiently small for this assumption to hold everywhere else. At z = 0, we
have:

—qQp;
kT

—q4¥Bn
-7

no(0) = Npexp = N.exp (7.20)

where we have also used Eqgs. 7.4 and 2.39. This condition is satisfied if dpn 18 at least several
kT /q’s.

Exercise 7.2: Specify the range of values of Schottky barrier height that at 300 K allow the use
of the depletion approzimation in equilibrium for metal-semiconductor Junctions built on Np =
10'7 em—2 Si.

The upper limit of qpp, is set by the maximum tolerable Po at the metal-semiconductor interface.
This is given by Eq. 7.19:

Y - —
po(0) = N, exp Lo 9280 o

kT
Solving for qpp,, we get:
N,
qopn < E, — kTn N,:;

For Np = 10'7 em ™ at 300 K, this demands that gyp, be a few kT"s smaller than 0.98 eV

The lower limit of gpp, is set by the maximum tolerable ng at x = 0 given by Eq. 7.20:

no(0) = N.exp < Np

~490n
kT
For Np = 10'" em™* at 300 K, this demands that gpp, be at least several k¥T’s over 0.15¢V.

Since most metals on Si fall within these two limits, the depletion approximation is of very wide
applicability.

7.3 Current-voltage characteristics of ideal Schottky diode

When a voltage is applied to the two terminals of a metal-semiconductor Junction. current fows.
As in the case of the PN diode, the current through a Schottky diode exhibits rectifying behavior.
Before we can understand the origin of this, we must study the modifications that the electrostatics
of the junction undergo upon the application of a voltage. This is the topic of the next subsection.
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Figure 7.9: Energy band diagram of a metal/n-semiconductor junction in forward bias (V' > 0).

7.3.1 Electrostatics under bias

Let us connect a battery with voltage V' across a Schottky diode. Through the contact to the
Schottky metal, the positive side of the battery ”grabs” on the Fermi level in the metal. Through
the ohmic contact, as we will see in Section 7.8, the negative side of the battery grabs on the
majority carrier quasi-Fermi level of the semiconductor. The application of a voltage V' between
the Schottky metal and the ohmic contact therefore results in a split between the Fermi level
of the metal and the quasi-Fermi level for electrons in the semiconductor of a magnitude ¢V, as
shown in Fig. 7.9 for forward bias and Fig. 7.10 for reverse bias. What is the resulting energy
band diagram? Do the electrostatics change across the structure? If so, how do they change?

A complete answer to these questions must be deferred until we have a way to calculate the
current that flows when a voltage is applied. This is a chicken and egg problem. We cannot
calculate the current without knowing the potential distribution through the structure, which
we cannot compute without knowing the currents. To break this circle, let us first assume that
the current has a negligible impact on the electrostatics. We will then use this to compute the
currents. At that point, we can estimate the order of magnitude of the required corrections and
perform them if they are not too large, or ignore them if they are very small.

In the case of a resistor, when a voltage was applied across its terminals, we made the implicit
assumption that the voltage dropped in a uniform way along its length. That is why the energy
band diagram is tilted with a constant slope everywhere. This is reasonable if the resistor has
uniform properties (resistivity and cross section) along its length. In the case of the Schottky
diode, the situation is rather different. This structure has basically five rather different regions
where the voltage can drop: the Schottky metal bulk, the interface of the Schottky metal with
the semiconductor, the space-charge region in the semiconductor, the quasi-neutral region or bulk
of the semiconductor and the ohmic contact to the semiconductor. Since the Schottky metal is
very conducting in comparison with the semiconductor, the voltage drop there is negligible. At
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Ey
Figure 7.10: Energy band diagram of a metal /n-semiconductor junction in reverse bias (V < 0).

its interface with the semiconductor, the Schottky metal can sustain some electrical charge. This
is a very thin region and cannot absorb any significant voltage. Moving into the semiconductor,
if we compare the QNR with the SCR, we can see that the QNR has many more carriers than the
SCR; the SCR is a lot more "resistive” than the QNR and it is reasonable to assume that most of
the voltage drops there. In an ideal Schottky diode, we also neglect the ohmic drop in the ohmic
contact. This all leads to assuming in a first pass that the voltage that is applied to a Schottky
diode drops entirely across the SCR. We will review this after we discuss the I-V characteristics
of the junction.

Fig. 7.9 shows the energy band diagram in forward bias. In this case, the quasi-Fermi level
for electrons in the QNR of the semiconductor is raised over the Fermi level of the metal by an
amount gV. Since we assume that there is no ohmic drop across the QNR in the semiconductor,
Efe remains flat throughout. The difference in the local vacuum level across the structure is
reduced from a value of ¢¢y,; in equilibrium, to a value g(¢y; — V) in forward bias. The total built-
in potential has accordingly shrunk from ¢y to ¢ — V. How can this be accommodated? By
reducing the magnitude of the dipole of charge that is set on both sides of the Schottky interface.
Since the volume charge density, ¢Np, cannot be changed, the only way to accomplish this is by
shrinking the extent of the space-charge region.

In reverse bias, the situation is similar. In this case, the battery lowers the Fermi level in the
semiconductor with respect to the Fermi level in the metal. This increases the total band bending
across the structure to ¢(¢w — V) (V is negative). In order to accommodate this, the space charge
region must widen. The energy band diagram is shown in Fig. 7.10. In both cases, forward and
reverse, continuity of the local vacuum potential prevents any changes on the Schottky barrier
height as a result of the bias application.

Fig. 7.11 shows the distribution of volume charge density, electric field, and electrostatic po-
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Figure 7.11: Sketches of volume charge density, electric field, and electrostatic potential in equilibrium and under
bias in a metal/n-semiconductor junction.

tential under forward and reverse bias. The electrostatics are essentially identical to equilibrium,
except that the potential difference across the structure is not ¢p; but ¢y — V. This allows us to
reuse the solutions to the electrostatics of the equilibrium situation solved above, except where
we wrote ¢y;, we must now write ¢; — V. The depletion region thickness is, for example:

2o —¥) Fa(V=0) /1= (7.21)

V —_—
zd(V) qNp Db

The maximum electric field under bias is:

(Emaz(V)] = 202D _ 20000 = V) _ g, v = )11 - @ih (7.22)
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These expressions are valid provided that the depletion approximation continues to apply.
This is the case if the forward voltage does not get too close to dy,.

Sketching the carrier concentration distribution and the location of the Fermi level across

the structure requires solving the current-voltage characteristics. This is postponed until Section
7.3.3 below.

Exercise 7.3: Calculate the extent of the depletion region and the peak electric field in an Al/n-Si
Schottky diode with Np = 10'" em™® at a forward voltage of 0.5 V at 300K.

We use the results of Exercise 7.1. The built-in potential of this structure is ¢y; = 0.53 V. Then,

/ V / 05V
1——=14/1- =0.24
Dpi 0.53V 0

The extent of the depletion region is:

V
(05 V) =a4(V = 0)\/1 rm =83x107% e x 0.24 = 20 nm

bi
The peak electric field is:

|Emaz(0.5 V)| = |Emaz(V = 0)[4 /1 — E’V— =1.4%10° V/cm x 0.24 = 3.4 x 10* V/em
bi

7.3.2 I-V characteristics: qualitative discussion

A Schottky diode is essentially a majority-carrier device. Mi nority carriers only play a secondary
role in its behavior. This is not hard to understand since in equilibrium there is not a significant
amount of minority carriers anywhere in the semiconductor that can flow and recombine.

It is not uncommon in semiconductor devices under bias to find that a specific region consti-
tutes the bottleneck to current flow while the rest of the device adapts as needed. In these kinds
of situations, the strategy to derive a model for the current-voltage characteristics is to focus
on this bottleneck and construct a model for transport there. In a Schottky diode, the lowest
concentration of carriers is found in the space-charge region. This is where we will center our
attention. Fig. 7.12 qualitatively helps us to consider what happens there.

Fig. 7.12 shows three sketches of energy band diagrams for our Schottky diode in three
different situations. In equilibrium, Fig. 7.12a, electrons face an energy barrier of height qypg,, as
they attempt to flow from the metal to the semiconductor or vice versa. The electron flow from
the metal to the semiconductor is balanced out by the flow from the semiconductor to the metal.
The net flow of electrons across the barrier is zero and the net current is zero.

In forward bias, Fig. 7.12b, the Fermi level on the semiconductor is raised by an amount gV
with respect to the Fermi level in the metal. Looking from the point of view of the electrons,
the energy barrier facing metal electrons attempting to enter into the semiconductor is 9% Bn,
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Figure 7.12: Sketch of electron flow across metal-semiconductor junction in a) equilibrium, b) forward bias, and
c) reverse bias. In equilibrium there is no net flow of electrons. In forward bias, there is a net flow of electrons from
the semiconductor to the metal. In reverse bias, there is net electron flow from the metal to the semiconductor.

just as in equilibrium. In contrast, the energy barrier preventing the flow of electrons from the
semiconductor to the metal has decreased to q(pp, — V). Clearly, this results in a net flow of
electrons from the semiconductor to the metal producing a current in the contrary sense.

In reverse bias, Fig. 7.12c, the Fermi level on the semiconductor is lowered by an amount
qV with respect to the Fermi level in the metal. The energy barrier facing the metal electrons
is still unchanged from equilibrium, while the energy barrier in front of semiconductor electrons
has now increased to q(¢pn — V) (V is negative in reverse bias). In consequence, there is a net
flow of electrons from the metal to the semiconductor and a current in the contrary sense.

The sketches of Fig. 7.12 also allow us to recognize the functional dependence of the current
on the voltage applied across the junction. In forward bias, as V is increased, the number of
electrons in the semiconductor that have enough energy to overcome the energy barrier at the
Schottky interface increases exponentially with V. This is a consequence of the exponentially
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decaying distribution of electrons in the conduction band of the semiconductor. The electron flux
from the semiconductor to the metal should therefore increase as e?V/*T.

In reverse bias, on the other hand, the number of electrons in the semiconductor with enough
energy to overcome the interfacial barrier is also exponentially suppressed as the reverse bias |V|
increases. When |V| exceeds a few kT/q’s, the injection of electrons from the semiconductor to

the metal is completely suppressed and the current saturates to the value given by the injection
of electrons from the metal to the semiconductor which is unchanged from equilibrium.

Our qualitative arguments have brought us quite far. We have identified the fact that over-
coming the energy barrier at the Schottky interface is the bottleneck to electron flow. Thinking in
terms of the electron population at that bottleneck qualitatively explains the rectifying behavior
of the Schottky diode. We are just a step away from developing a simple model for the current-
voltage characteristics. What we are missing is a way to figure out the rate at which electrons
flow through the SCR.

Let us start by thinking about the situation in thermal equilibrium. With V = 0, the net
current anywhere is zero. In the SCR, where an electric field is present, that means that there is
a drift current that must be perfectly balanced everywhere by a diffusion current. This originates
in the gradient of electron concentration that exists from the bulk, where it is highest, to the
metal-semiconductor interface where it is lowest.

Under forward bias, the field distribution in the SCR shrinks in magnitude and spatial extent.
This breaks the balance of drift and diffusion with diffusion prevailing over drift. This yields a
net electron flow from the semiconductor towards the metal. As these electrons enter the metal,
they quickly lose their energy thermalizing with the many electrons there. Somehow, what limits

the forward bias current is the ability of electrons to reach the metal-semiconductor interface.
Once there, they are immediately ”sucked” by the metal.

We can contemplate two extreme situations here. In one, the rate limiting step to the cur-
rent is the process of electron diffusion against the strong electric field in the SCR. In this limit,
the electron concentration drops as we advance from the edge of the SCR towards the Schottky
interface. At the metal-semiconductor interface, the electron concentration approaches the equi-
librium value as these electrons are in a quasi-equilibrium state with those in the metal. A model
that describes the current in this limit is known as the drifi-diffusion model. This situation is
more likely to arise in semiconductors with small mobilities and for low forward bias when the
opposing electric field is relatively high.

At the other limit, if the mobility is high and the field is small as a result of strong forward
bias, electrons readily reach the metal-semiconductor interface. In this case, it is the process of
“emission” into the metal that limits the current. What is exactly this process? We focus at
the tip of the energy barrier on the semiconductor side of the the metal-semiconductor interface
because that is where the electron concentration is the lowest anywhere in the semiconductor.
At that location, the electron concentration is finite and the velocity at which they flow into the
metal is also finite. This limits the current to some amount. So, in the limit in which electrons
can easily arrive to the Schottky interface from the bulk, it is this maximum ” emission current”
at the tip of the barrier that sets the diode current. This is known as the thermionic emission
model.
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As it turns out, for Si, GaAs and many common semiconductors under most conditions, the
thermionic emission current is found to be the rate limiting step. This is because the mobilities
are high enough and carriers can readily reach the Schottky interface. The next section formulates
the thermionic emission model. Appendix AT7.2 describes the drift-diffusion model.

7.3.3 I-V characteristics: thermionic emission model

As we have discussed in the previous section, in the thermionic emission model, the current
is limited by the electron emission process over the tip of the energy barrier at the Schottky
interface. We then focus at the semiconductor side of the Schottky interface located at = 0™
and we write the diode current as the net electron current at that location. This is given by
the balance between current due to electron flow from the semiconductor to the metal minus the
reverse electron flow from the metal to the semiconductor:

Ji 2 Je(07) = Je.sm (07) — Je,m5(07) (7.23)

In forward bias, Je ars(07) is very small next to Je sar(07). We then neglect this component

for the time being and focus on this first term that accounts for electrons emitted from the
semiconductor into the metal. This current can be approximately expressed as:

Je,sm(07) 2 —qn(07)ve(07) (7.24)

Here, the minus sign comes from the fact that with our definition of axis, the velocity of these
electrons is against z, or negative (J. gas(07) ends up positive). Note also that we assume that
all electrons at x = 07 contribute to this current component. The reverse current is very small
and, for the time being, we can ignore the few electrons that support it.

To proceed, we need to exploit the assumption that electrons have no difficulty reaching the
Schottky interface from the bulk. This is in essence, the quasi-equilibrium approzimation in which
electrons across the SCR are all in equilibrium with each other and also with electrons in the
bulk of the semiconductor. Without further thinking, the Boltzmann relation would allow us
to express n(07) in terms of the electron concentration in the bulk, Np, and the difference of
potentials between the surface and the bulk, ¢, — V. We would be then tempted to write:

n(0T) = Npexp :Mff:yz (7.25)

But there is a problem here. At z = 07 the electron distribution cannot be close to equilib-
rium. In fact, it has to be very different from an equilibrium Maxwellian distribution. A carrier
distribution can only be considered in thermal equilibrium when electrons undergo many colli-
sions with the lattice that randomize their velocity. Right at the metal-semiconductor interface,
any electron that has velocity components pointing towards the metal will be ”"sucked” by the
metal but no electron in the metal can make it into the semiconductor because there is a large
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Figure 7.13: Sketch of conduction band across SCR in Schottky diode. Also shown are the distributions of
x-component of electron velocity at three locations. Across most of the SCR, electrons are in quasi-equilibrium
with the bulk and the electron distribution is Maxwellian. On the semiconductor side of the Schottky interface,
the velocity distribution is hemi-maxwellian as only electrons with velocity components pointing towards the metal
are present.

energy barrier at the interface that prevents it. So, right at the tip of the barrier at = 0T,
there are very few electrons with velocity components pointing towards the semiconductor (this,
to the extent that we can neglect J, yr5(07) next to Je.sar (01)). In effect, at 2 = 0T we have an
hemi-mazwellian distribution. This is sketched in Fig. 7.13.

This figure sketches the conduction band diagram of a Schottky diode in forward bias. It also
sketches the distribution of the x-component of the electron velocity at three different locations.
In the bulk of the semiconductor, there is a large electron concentration that can be considered
to be in near thermal equilibrium with the lattice. The distribution of electron concentration in
energy and the x component of velocity are very close to perfect equilibrium (dashed lines). Only
a small difference exists between the distribution of electron velocities pointing towards the metal
and away from the metal that gives rise to a net electron flow towards the Schottky interface.
Under the quasi-equilibrium approximation, this situation persists across nearly the entire SCR.
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On average, a mean free path away from the metal-semiconductor interface, at @ = [, the
electrons that ultimately are emitted into the metal suffer their last collision. From there on, those
‘that have enough energy to overcome the energy barrier at the interface and that after their last
collision have a component of velocity pointing towards the metal succeed in getting emitted into
the metal and contribute to diode current. Those that have the right velocity component but
do not have enough energy eventually are reflected by the energy barrier and do not contribute
to current. All those that scatter back into the semiconductor also do not contribute to current.
The end result is that the distribution of electron velocities right at the Schottky interface at

@ = 07 is very far from thermal equilibrium as only the negative velocity half of the Maxwellian
distribution is present.

This understanding allows now to correctly estimate n(07). We can easily express n(07)
in terms of n(le), the electron concentration a mean free path away from the interface. On
average, only half of the electrons at = [ have a velocity that points towards the interface.
Of those, only a fraction have enough kinetic energy to make it over the potential barrier that
exists between x = 0 and = = [... The height of this potential barrier is given by the electrostatic
potential difference between = 07 and 2 = I, that is g[¢(lee) — #(0T)]. Then, the electron
concentration at z = 0 can be written as:

n(O*) == n(;ce) exp Q[Qﬁ(o—lﬂ—_‘ ‘I’UCG)]

(7.26)

The electron concentration at x = I, can be computed by solving the drift-diffusion problem
across the rest of the SCR. As we have mentioned before, in semiconductors with relatively high
mobilities, such as Si and GaAs, a quasi-equilibrium situation prevails over the SCR from the
bulk up to x = l... We can then use the Boltzmann relation to relate n(l..) and n(ry) ~ Np:

é £CC r
n(lee) ~ Np exp q—'k(T ) (7.27)

We can now substitute 7.27 into 7.26 and use the fact that ¢(07) = — (¢ — V') obtained in
Section 7.3 to get:

GOy = 2D exp

Np —a(¢i—V) _Ne —q(epn—V)
2 kT 2 OPT kT

(7.28)

Equation 7.28 has a simple and intuitive physical interpretation. The electron concentration
at z = 07 is exactly half of what one would have if it was in thermal equilibrium with the bulk
(Eq. 7.25). The factor of 1/2 originates from the lack of scattering to the left of z = 0 to bring

any electrons back. All electrons at z = 07 are injected into the metal. Notice that, as expected,
n(0%) ~ edV/4T,

The second step in the construction of a model for current is the computation of the electron
velocity at the interface pointing towards the metal. In Ch. 4 we introduced the notion of thermal
velocity of electrons, vipe. This is the average instantaneous velocity of electrons over distances
shorter than a mean free path. At the metal-semiconductor interface, however, most electrons
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point into the metal with velocities at an angle, therefore contributing a smaller net forward
velocity. When the statistics of the electron velocity distribution are properly taken into account,
the velocity at which electrons are emitted from the semiconductor into the metal (and vice versa
in reverse bias) is actually vie/2. Using Eq. 4.5, we can then write:

+y . _ Ythe -
ve(07) = 5 — (7.29)

(805

where the minus sign simply indicates that electrons are flowing in the contrary sense to our
choice of axis. For Si at room temperature, v.(0") is just about 107 cm/s.

Plugging Eqs. 7.28 and 7.29 into 7.24, we get:

kT —q(épi — V) . | kT —qPBn _ qV
+y=gN =gN L :
Je.sm(07) = aNp 2rmz, P kT e\ 2rmz, P kT OP7 (730)

where we have used Eq. 7.4 and the relationship given in Ch. 4 between wn, Np and N,.

Using now the expression for N, given in Eq. 2.26, we can write:

T P ) L 4
Jesm(07) = A*T< exp T P LT

. 4dmqk®m, (m;e/-mo)g
A= RS\ (mE/me) (7-32)

A is called Richardson’s constant and is a characteristic of the material and the type of carrier.
The quantity in front of the square root has a value of 120 A . cm~2 . K2

(7.31)

where A* is:

We have solved half of the problem. We still need to get Je ars(07) to complete the calculation.
However, we know that the current due to electron flow from the metal to the semiconductor is
unaflected by the application of a voltage. This is again due to the fact that the energy barrier
that is presented to electrons in the metal does not change with bias. Therefore, we can get
an expression for Je ar5(07) by equating it to Je,sm (07) in Eq. 7.31 at zero volts when the net
current should be zero. This yields:

Jems(0F) = A*T2 exp _—‘i‘;_?_ (7.33)

The final net diode current is then:

Jy = A*T? exp —_%(exp — —1) . (7.34)
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Figure 7.14: Sketch of I — V characteristics of metal-semiconductor junction, in a linear scale on the left, and in
a semilogarithmic scale on the right.

This equation is valid in forward as well as in reverse bias since in reverse bias, the current satu-
rates to Eq. 7.33 (with a minus sign) as the forward emission of electrons from the semiconductor
to the metal is completely suppressed.

In a diode that has a junction area A;, the current flowing through the diode is then:

Is Ig(expi—;:— -1) (7.35)

where Ig is called the saturation current. This is identical to a PN diode and is plotted again in
Fig. 7.14 in linear and semilog scales. In a semilog scale, the forward bias current appears as a
straight line with a slope of (¢/kT')log e = 0.43q/kT or 60 mV/dec at room temperature.

Fig. 7.15 shows experimental I —V characteristics of a PtSi/n-Si junction. The experimental
data follows the shape predicted by Eq. 7.35 very accurately.

The saturation current Ig has a very peculiar set of dependencies in itself:

Is = A;A*T? exp —1£Bn (7.36)

Is in this equation depends exponentially with a minus sign on the Schottky barrier height.
This is reasonable since the higher the barrier, the lower (exponentially) the flow of electrons
over it. The pre-exponential factor depends on the square of the absolute temperature. Since A*
does not depend on temperature, Is/T? is thermally activated with an activation energy equal to
q¢Bn. This suggests an experimental procedure to determine gppg,. First, I — V characteristics
are measured as a function of temperature and Ig is extracted at all temperatures. Then Ig JT?
is graphed in an Arrhenius plot. The slope of the resulting straight line gives gop,. This is
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Figure 7.15: Experimental I —V characteristics of PtSi /1-5i Schottky diodes at room temperature [diode courtesy
of B. Scharf (Analog Devices), data and model courtesy of S. Krupenin (MIT)).

experimentally illustrated in Fig. 7.16 for the same diode of Fig. 7.15.

A word about Richardson constant A*. As seen in Eq. 7.32, the thermionic emission theory
predicts it to depend only on the semiconductor and to be independent of the metal. For n-Si,
if one plugs in the appropriate values of effective masses, one obtains A* ~ 258 A-em—2. K2,
A more refined theory predicts that A* depends somehow on the crystalline orientation of the
material. It is not the same to make a Schotky diode on (100) Si than on (111) Si. In practice, one
can experimentally extract A* from actual measurements on Schottky diodes. What is found is
that A* depends a lot on the nature of the metal itself, its thickness, and the details of the process:
surface preparation prior to metal deposition, the deposition parameters and any post-deposition
treatments. The reasons for these dependencies are various: surface roughness, local strain, the
formation of metal-semiconductor compounds, interfacial oxides, etc. The bottom line is that
for a given metal-semiconductor system, we cannot simply take the theoretically predicted value
of A* given by the thermionic emission theory and expect to accurately predict Ig in Schottky
diodes. The proper action is to build some test diodes and measure A* and then use this in the
model.

Let us now discuss the key assumption that we have made in the development of our theory.
In deriving the previous equations, we assumed that thermionic emission of electrons over the
Schottky barrier is the rate-limiting mechanism for electron transport, and that drift and diffusion
through the SCR are in near perfect balance from x = I, to the end of the depletion region towards
the body. This assumption allowed us to focus on the emission process over the tip of the energy
barrier at the metal-semiconductor interface in order to compute the current. Elsewhere in the
SCR, we used the Boltzmann relation to calculate the electron concentration.

For this quasi-equilibrium assumption to apply, the net current that flows through the junction
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Figure 7.16: Left: Forward I-V characteristics of PtSi/n-Si Schottky diode for different temperatures. Right:
Arrhenius plot of Is/T? for the same diode. The slope of the straight line gives qpp, [diode courtesy of B. Scharf
(Analog Devices), data and fit courtesy of S. Krupenin (MIT)].

must be much smaller than either the drift or the diffusion currents. In this way, only a small
imbalance between these two currents needs to exist. It is particularly intuitive to focus on the
drift current. Quasi-equilibrium is guaranteed up to & = l. if the thermionic emission current is
much smaller than the drift current at that location, that is,

|JE,SIL'I(0+)| < |Je,drift(£ce)1 (737)

Using Eqs. 7.24, 7.26 and 7.29 on the left hand side, and the usual expression for the drift
current on the right hand side (J¢ grift = guen€), we can rewrite this as:

qu’Ic‘e
kT

1

JUthe exp(— ) € pe|E(le)| (7.38)
where we have defined Agr.. as the potential build-up over the first mean-free path of the SCR
starting from the metal-semiconductor interface.

Expressions 4.5, 4.8 and 4.10 allow us to express the mobility in terms of the velocity and the
mean free path as: p. = glee/(m vine). Plugging this on the right hand side of Eq. 7.38, and
noting that [, |E(lee)] < Adjee, we can rewrite this expression as:

qﬂéice qAéEce 2
T exp( T ) > = (7.39)
This is readily satisfied if:
kT

Adiee > 1.5'? (7.40)
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Figure 7.17: Energy band diagrams in metal-semiconductor junction in forward and reverse bias showing the
location of the quasi-Fermi level for electrons.

or, in other words, if the potential drop in the first mean free path from the interface exceeds
1.5kT'/q. This is called the Bethe condition. In Si this condition is easy to satisfy at all practical
voltages because the mean-free paths are rather long. An example is given in Exercise 7.4.

Exercise 7.4: Evaluate the validity of the Bethe condition for an Al/n-Si Schottky diode with
Np =10'7 em™3 at a forward voltage of 0.5V at 300K.

For this calculation, we need the mean free path in the SCR. If we assume that the electron mobility
in an SCR is identical to that of a QNR with an identical doping level, we can use the result of
Exercise 4.1 where we obtained for this same doping level I.. ~ 22 nm.

From Exercise 7.3 we know that for this Schottky diode at this forward voltage, the peak field at
the Schottky interface is [Emax| = 3.4 x 10* V/ern. Then, the potential drop in the first mean free
path away from the Schottky interface is:

Adree = lee|Emae] = 22 x 1077 em x 3.4 x 10* V/em = 0.075 V

This is comfortably bigger than 1.5kT/q ~ 39 méV and the Bethe condition is fulfilled. For
this Schottky diode, even for such a high forward voltage, the thermionic emission model is the
appropriate one.

We are finally in a position to draw the electron quasi-Fermi level, Efe, across the device.
Discussion of the hole quasi-Fermi level still needs to be postponed until we discuss the behavior
of minority carriers. Drawing Ey. is now easy. The assumption of quasi-equilibrium across the
entire device with the exception of the very first mean-free path implies that the quasi-Fermi level
for electrons is flat in this entire region. It location is set by the doping level in the QNR. This
is sketched in Fig. 7.17.

Within the very first mean-free path away from the metal-semiconductor interface, the concept
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of quasi-Fermi level is not appropriate as the electron distribution is very far from Maxwellian.
We indicate this in Fig. 7.17 by means of a dotted line that suggests that the electron distribution
comes to equilibrium with the electrons in the metal at the metal-semiconductor interface.

7.4 Charge-voltage characteristics of ideal Schottky diode

As we learned in the PN diode, in order to describe the dynamic behavior of a Schottky diode
in a circuit, we need a model for the stored charge. If the voltage across the diode changes, the
stored charge must change too and the outside circuit must deliver it. This is a real current that
needs to be accounted for.

The ideal Schottky diode is a majority carrier device. The current that flows upon the
application of a voltage arises from the flow of majority carriers over the energy barrier at the
metal-semiconductor interface. In an ideal Schottky diode, unlike a PN diode, the minority carrier
concentration is unperturbed from its equilibrium value. There is then no minority carrier storage
to contend with. In an ideal Schottky diode, the only stored charge to keep track of is that of
the space-charge region which thickness is modulated with the applied voltage as we discussed in
Sec. 7.3.1.

The situation is similar to that of a PN diode. Fig. 7.18 sketches the volume charge density
in the space-charge region of a Schottky diode with a certain voltage V' applied. Whether the
voltage is forward or reverse, there is a dipole of charge of a magnitude @Q across the metal-
semiconductor interface. For the example depicted in Fig. 7.18, there is a charge +@Q in the
SCR of the semiconductor that is imaged in an equal amount of charge —(Q due to a pile up of
electrons at the metal surface.

If the voltage that is applied across the diode is increased (made more positive) by a small
amount, AV, the SCR shrinks a small amount and the pile up of electrons at the metal surface
is also reduced somehow. This means that a small quantity of positive charge, + AQ, is delivered
to the metal (the positive plate) and the same amount of negative charge, —AQ, is delivered to
the semiconductor (the negative plate). The overall charge dipole shrinks, as required.

The stored charge in the SCR can easily be obtained within the depletion approximation.
From Eq. 7.21, we have:

Q(V) = —AgNpz4(V) = —A\/2qNpe(dpi — V') (7.41)

As for the PN diode, this equation can be rewritten as:

QV) = Q(V = 0),/1 - é% (7.42)

It should not be surprising that we obtain an identical @@ — V relationship for the Schottky
diode and the PN diode. Essentially, the electrostatics of the SCR for both devices is identical.
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+AQ

Figure 7.18: Change in the volume charge density in a metal/n-semiconductor junction as a result of increasing
the voltage across.

The graph of @ vs. V for the PN diode of Fig. 6.21 applies here.

7.5 Equivalent circuit models for the ideal Schottky diode

A device equivalent circuit model is a circuit-like description of its electrical behavior. With the
physics of the Schottky diode and the PN diode related in so many ways, their equivalent circuit
models are also bound to be very close. In fact, topologically, the equivalent circuit models for
these two devices are identical.

We studied the equivalent circuit models for the ideal PN diode in Sec. 6.5. We saw that the
large-signal ideal PN diode model contains a "charge-less” ideal diode element that embodies its
rectifying I-V' characteristics plus a charge storage element in parallel that represents the SCR
and the minority carrier charge. The equivalent circuit model for the Schottky diode should
look exactly the same except for the absence of the minority carrier charge in the charge storage
element. For convenience, we graph it again on the left of Fig. 7.19. In this figure Ig represents
the saturation current of the Schottky diode (Eq. 7.36) and Q represents the SCR charge given
in Eq. 7.42.

When we discussed the PN diode equivalent circuit models, we also noted the interest in
developing a small-signal model that represents in a circuit form the behavior of the device to
small excursions around a bias point. For the PN diode, the ideal-diode element is linearized
into a resistor and the charge storage element turns into a capacitor. The small-signal equivalent
circuit model for an ideal Schottky diode is identical, As graphed on the right of Fig. 7.19, it
contains a resistor in parallel with a capacitor. The small-signal resistor is given by an identical
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large-signal model small-signal model

Figure 7.19: Large-signal and small-signal equivalent circuit models for the Schottlky diode.
expression to that of the PN diode, reproduced here for convenience:

kT kT

Tg=———— o~ —
qI+1Is) — qI

(7.43)

where the approximation applies for moderate and strong forward bias. This is the dynamic
resistance of the ideal Schottky diode.

The capacitor is associated with SCR charge storage. As in the case of the PN diode, we can
obtain it by differentiating Eq. 7.41 or Eq. 7.42 with respect to voltage:

B eNp  C(V=0)
C(V)_AHQ(@M—V) = | (7.44)

Db

This is an identical functional expression to that of a PN diode (sketched in Fig. 6.25). As in
that case, this expression for the SCR capacitance can also be obtained in analogy with a parallel
plate capacitor by using C(V) = Ae/xq(V) and then using Eq. 7.21.

Also in a close parallelism with a strongly asymmetric PN diode, the inverse square of C(V)
in Eq. 7.44 is linearly proportional to Np, the doping level in the semiconductor. This is a
standard way to measure this plus the Schottky barrier height in Schottky diodes, as shown in
the example of Fig. 7.20.

7.6 Non-ideal and second order effects

In this section we chip away at the long list of assumptions that was made in the definition of
the ideal Schottky diode and discuss some important non idealities and second-order effects.
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Figure 7.20: € vs. V and 1/C? vs. V for a GaN Schottky diode [diode courtesy of R. J. Molnar (MIT Lincoln
Laboratory), data and fit courtesy of S. Krupenin (MIT)].

7.6.1 Series resistance

In our analysis of the ideal Schottky diode of Fig. 7.2 we neglected the presence of any series
resistance. When we derived the expressions for the I-V characteristics, we assumed that the
entire voltage applied to the terminals of the device appears across the SCR. But we know that
there are ohmic drops at the bottom contact of the diode and in the quasi-neutral body of the
device. Just like in the PN diode, these ohmic drops can affect the I-V characteristics of the
device at high currents in a significant way.

Since the I-V characteristics of the Schottky diode are functionally identical to those of the
PN diode, the role of series resistance is also the same in both devices. We refer to Eq. 6.86 for a
modified diode equation that incorporates series resistance, and to Fig. 6.32 for a manifestation
of the series resistance in its I-V characteristics. Series resistance is also captured in an equivalent
circuit model of the Schottky diode in the same way as for the PN diode (see Fig. 6.33).

There are two components to the series resistance of the Schottky diode: the contact resistance
and the body resistance. Between the bottom metal and the semiconductor, there is a contact
resistance. We study the physics of ohmic contacts in detail later on in this chapter. As we
discussed in the context of the PN diode, a metal-semiconductor contact resistance is characterized
through its contact resistivity, p.. The contact resistance is given by the product of p. and the
area of the contact. Therefore, for the Schottky diode of Fig. 7.2, we have:

Then there is the resistance of the body. This is associated with the QNR as majority carrier
electrons drift through this region to support the diode current. The resistance is simply the
geometrical resistance of this region given by:
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The voltage dependence of R,, through that of z; is generally negligible. The total resistance
of the diode is given by the sum of R, and R,,.

Schottky diodes are frequently utilized in applications in which it is important to minimize
any parasitic ohmic drop as this adds to power dissipation. In high frequency applications, Ry
degrades the dynamic response of the diodes, as we will discuss in Section AT7.4. For these
reasons, a key consideration in Schottky diode design is to minimize series resistance.

7.6.2 Breakdown voltage

In a Shottky diode in reverse bias, a small trickle current flows due to electrons in the metal that
have enough energy to overcome the Schottky barrier height at the metal-semiconductor interface
and get injected into the semiconductor. As the reverse voltage increases, the magnitude of the
electric field in the depletion region increases too. For sufficiently high reverse bias, the flowing
clectrons might gain enough energy from the electric field and suffer impact ionizing collisions as
they travel through the depletion region. The additional carriers that are generated contribute
to the total current which in this way increases over the ideal value given by Eq. 7.36 above.
For high enough reverse bias, avalanche breakdown might take place and the current increases
abruptly to very high values. The manifestation of breakdown in the I-V characteristics of a
Schottky diode is similar to that of a PN diode (Fig. 6.34). The voltage at which avalanche
breakdown occurs is the breakdown voltage of the device. This is a very important parameter
since it limits the highest reverse bias that the device can support.

As in so many other aspects, the physics of avalanche breakdown in Schottky diodes and PN
diodes are closely related. So, in principle, we could use the theory presented in Sec. 6.6.4 to
model the breakdown voltage of a Schottky diode. From our study of PN diode breakdown, we
would then conclude that the breakdown voltage in a Schottky diode is mostly set by the doping
level of the semiconductor and should be rather independent of the metal that is used. We can
also expect that the higher the doping in the semiconductor, the lower the breakdown voltage.

In practice what is found is that for the same doping level in the semiconductor, the breakdown
voltage of a Schottky diode is significantly smaller than what is typically obtained in a PN diode.
The reason for this has to do with the presence of a high electric field at the sharp edges of the
metal that leads to premature breakdown. The situation is illustrated in Fig. 7.21. This problem
does not exist in PN diodes because the high field region is inside the semiconductor and away
\ from the metal contacts.

Several solutions to this problem are sketched in Fig. 7.21. One of them relies on the metal
overlap over an Si0Oy window that defines the active area of the diode. The edges of the metal
in this way are not in direct contact with the semiconductor. A moat structure sometimes is
feasible in certain processes. In this approach, as shown, the semiconductor is slightly etched in
the active area of the diode. The curvature of the periphery of the moat smoothes out the electric
field from the edge of the metal.



444 Integrated Microelectronic Devices: Physics and Modeling

_ high field at edge

direct edge contact

metal overlap

moat

guard ring

Figure 7.21: A direct overlap of the metal edge and the semiconductor results in high electric fields at the corner
that lead to premature reverse breakdown (top). This can be mitigated through the use of a metal/oxide overlap,
a moat, or a p-n junction guard ring.

A p-n junction guard ring is also effective. In a design on an n-type well, a p-region is inserted
right underneath the periphery of the diode, as sketched in Fig. 7.21. At the edges of the
metal, this produces a PN junction in parallel with the Schottky junction. This combination
can support a higher reverse voltage. This approach has the drawback of the extra space needed
in the lateral dimension by the p-region. This makes the diode bigger and in consequence less
attractive economically. There is also the danger in this design that the p-n junction might turn
on in forward bias. If that happens, the minority carrier charge associated with the p-n diode
considerably slows down the combined device. This can occur, in particular, if a metal with a high
Schottky barrier height is being used. Careful design of the p-doping level is required to avoid
this problem. This is typically done using a device CAD tool since the problem is intrinsically
two-dimensional.

7.7 Integrated Schottky diode

Schottky diodes have been in use in a variety of applications for many years. For a long time,
they were used as ”clamps” in the bipolar transistor TTL digital logic family. When placed in
parallel with the base-collector junction of the BJT, the forward branch of the I-V characteristics
of the Schottky diode limits the maximum forward voltage in the base-collector junction and
prevents the bipolar transistor from entering saturation. In modern analog circuits, integrated
Schottky diodes are very frequently used in such diverse applications as track and hold circuits
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in analog-to-digital converters, and in the pin driver circuits of IC test equipment. The Schottky
diode is the preferred choice for such applications because of its small forward voltage and its
fast on-off switching speed. Schottky diodes are particularly useful as detectors and mixers in
communications and radar applications at the very high frequency end of the spectrum where
active devices (that is, devices with gain, such as transistors) have poor performance or are not
available altogether. Their low intrinsic capacitance allows them to handle signals at frequencies
beyond most other devices.

In spite of their great usefulness, in modern microelectronics, cost considerations dictate that
Schottky diodes be engineered by taking advantage of process modules that have been developed
for other circuit components. Rarely are new process modules introduced for the sole purpose
of fabricating Schottky diodes. For example, the metal used for the Schottky barrier is often
the ohmic contact metal. Device engineers must show resourcefulness and imagination to design

Schottky diodes with low parasitics that meet the required specifications based on existing process
modules.

Fig. 7.22 shows the cross section of two typical integrated Schottky diodes. One is fabricated
in a CMOS process (left) and the other one is made on a bipolar process (right). In the CMOS
process example, the n-well of the p-MOSFET is used as cathode and a metal placed in direct
contact to the well serves as anode (the Schottky junction itself). The n-well is contacted using the
body contacts of the p-MOSFET. In the bipolar design, the collector of a Si npn bipolar transistor
serves as cathode and a metal placed in direct contact to it is the anode. The nT-subcollector
or buried layer and the n™-collector plug provide a low resistance path for the current from the
cathode to the surface of the semiconductor.

An integrated Schottky diode does not have the isolation problems of an integrated PN diode
that were discussed in Sec. 6.7.1. Because minority carrier injection does not take place, there
is no "hidden” parasitic bipolar transistor to worry about. Still, the device needs to be properly
isolated. In both examples in Fig. 7.22 the Schottky diode incorporates a parasitic substrate
PN diode. Recognizing this is important for two reasons. To insure proper circuit operation,
the n-well should never become forward biased with respect to the p-type substrate. Under
DC, this can be insured by connecting the substrate to the most negative power supply that
is available. Under transient conditions, making sure of this is harder and requires appropriate
circuit simulations. The second reason to be aware of regarding the parasitic substrate PN diode
is its associated junction capacitance. Depending on the circuit configuration, this can seriously
affect the dynamics of the diode and needs to be part of the design process.

An additional consideration in an integrated Schottky diode is its series resistance. R, affects
the performance of a Schottky diode in just about any circuit application. All components of the
series resistance must be well understood and modeled. In Sec. 6.7.2 we showed how to compute
the series resistance of a PN diode in a typical case. The procedure is very much geometry
dependent but there is no fundamental difference between the Schottky diode and the PN diode.
Refer to Secs. 6.7.2 and 7.6.1 for more details.

Given that in a typical IC process there is some freedom to choose the body and the metal
of an integrated Schottky diode, it is important to critically think through this and be mindful
of the trade-offs involved. To discuss this, consider the I-V characteristics of a Schottky diode in
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Figure 7.22: Schematic cross sections of two integrated Schottky diodes fabricated on a CMOS process (left) and
on a bipolar process (right).

Fig. 7.23. For the purpose of this discussion, let us assume that what is desired is a diode that
switches from an ON state where it must support a certain amount of forward bias current [ f
while dropping a very low forward voltage Vy, and an OFF state where the diode must be capable
of blocking a sufficient reverse voltage V. while conducting a very small amount of reverse bias
current.

The choice of Schottky metal is of prime importance. The higher the Schottky barrier height
of the metal, the more forward voltage in the ON state is needed to supply a given current, but
the smaller the reverse leakage current in the OFF state. Also, a high Schottky barrier height
results in increased temperature sensitivity of the IV characteristics. The doping level in the
bulk is also a key design parameter. A high doping level minimizes series resistance and switching
speed but results in more capacitance and a smaller breakdown voltage.

The vertical extension of the bulk is also important. In designs with a buried layer, such as
the one shown on the right of Fig. 7.22, the vertical thickness of the bulk of the diode should
be enough to entirely accommodate the depletion region at hreakdown. Otherwise, premature
breakdown will occur. Excessive body thickness, on the other hand, adds series resistance.

Left in the design process is selecting the area of the diode. This is the prerogative of the
circuit designer who does this taking into consideration the specific requirements of each diode
in its circuit context. The smaller the diode area, the lower the capacitance and the lower the
reverse leakage current. A smaller diode footprint is also more economical. However, in small
diodes, the series resistance and the forward voltage that is required to deliver a certain current
are larger.

7.8 Ohmic contacts

Electrical current flows in and out of microelectronic devices through its ohmic contacts. A
perfect ohmic contact does not present any resistance to current. Real ohmic contacts, on the
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Figure 7.23: I-V characteristics of Schottky diode showing the two typical operating points in a switching
application. For small-signal applications, the device is usually biased in the ON state.

other hand, drop a small voltage when current flows and therefore present a parasitic resistance.
If excessive, this can degrade device performance.

Ohmic contacts are in essence metal/semiconductor junctions with a very large saturation
current density. They can support substantial current in forward or reverse bias with little
voltage across. When V' < kT /q in a metal-semiconductor junction, the exponential in the J —V
characteristics can be linearized (e?"/*T ~ 1 4 qV/kT), to obtain:

o AT exp Z2PBn @V _ V. (7.47)
kKT kT pe

In the limit of small V, the current through the ohmic contact is linear in V for forward
and reverse bias. This allows us to define a figure of merit for an ohmic contact called the
ohmic contact resistivity, pe, as in Eq. 7.47. The units of p, are - em?. A good ohmic contact is
characterized by a very small value of p.. For Si, good ohmic contacts display p. < 10~7 Q-cm? (or
10 ©.pn”, an easy number to remember). This means that when a current density of 10° A/em?
flows through them, the ohmic drop across the contact is only 10 mV.

How does a metal-semiconductor junction become a good ohmic contact? Eq. 7.47 seems to
indicate that the only degree of freedom provided to the engineer is the selection of a metal with
a very small Schottky barrier height. While that certainly helps, something else can also be done
that is far more effective, i.e., increasing the doping level right below the metal. To understands
the reasons for this, we need to look beyond thermionic emission limited transport.

As the doping level increases in a metal-semiconductor junction, the extent of the depletion
region decreases. This can be seen in equilibrium in Eq. 7.15. If you put numbers to this
expression, you will realize that for a typical ¢y; of 0.5 V, at a doping level of about Np ~
10" em ™3, the depletion region thickness in thermal equilibrium is of a magnitude comparable
to the de Broglie wavelength at room temperature (which is about 7.6 nm, see Section 1.1.2). At
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these dimensions, electron tunneling suddenly becomes rather likely.

Tunneling is a quantum mechanical phenomenon that enables carriers with insufficient energy
to "bore” through energy barriers. While classically forbidden, the quantum mechanical nature
of the electron allows tunneling to happen with a finite probability. The energy band diagrams of
Fig. 7.24 schematically illustrate tunneling in n-type and p-type ohmic contacts. In this figure,
the Fermi level has been drawn inside the conduction band for n-type semiconductor and the
valence band for the p-type semiconductor to indicate the fact that tunneling becomes prevalent
when the doping levels are degenerate. Examining an n-type ohmic contact first (left of Fig.
7.24), the application of a voltage across the contact misaligns the Fermi level on the metal
with respect to the semiconductor. For both polarities of the voltage, this presents electrons on
the semiconductor or the metal with empty states on the other side of the metal-semiconductor
barrier. By tunneling through the barrier, electrons can then lower their energy. In this manner
current flows. The thinner the barrier, the higher the tunneling probability and the higher the
current that will low through the contact for a given voltage.

For a p-type ohmic contact (right of Fig. 7.24) we need to examine this picture in somehow
more detail since conduction in the metal takes place through electrons, but conduction through
the semiconductor involves holes. When the quasi-Fermi level for holes on the semiconductor is
slightly above the Fermi level on the metal, electrons in the valence band of the semiconductor
can tunnel to empty states into the metal. This leaves holes behind on the semiconductor that
can now support the current away from the contact into the body of the semiconductor. For
the reverse polarity, electrons in the metal tunnel into the valence band of the semiconductor
consuming holes and terminating a hole current that flows from the body of the semiconductor
into the contact.

A property of tunneling is that the tunneling current depends exponentially on the inverse
thickness of the barrier. Once tunneling becomes significant, the tunneling probability increases
very quickly with further enhancements of the doping level. This is then by far the most effective
and practical way of engineering low resistivity ohmic contacts. Using metals with small Schottky
barrier heights also helps, but it is not required. Fig. 7.25 shows ohmic contact resistance as a
function of doping level for PtSi and W ohmic contacts on n-Si. As seen, p, decreases steeply at
high doping levels and reaches values of the order of 10™® ©.cm? at about a doping level in the
mid 1020 ¢m 3 regime.

In a well designed device, wherever an ohmic contact is needed, a heavily doped region is
introduced. The contact resistance of an ohmic contact of area A, is to the first order:

e
R.=— 48
° 4 e

The bigger the contact area, the smaller the contact resistance.

Eq. 7.48 applies only if the current flow is normal to the metal-semiconductor interface across
the entire contact area. This equation, however, is not suitable for lateral contacts, that is,
contacts in which the current in the semiconductor ends up flowing parallel to the semiconductor
surface. These are very common contacts in semiconductor devices and require special treatment.
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Figure 7.24: Energy band diagrams illustrating electron tunneling in n-type (left) and p-type (right) ohmic
contacts. Top row represents thermal equilibrium. Second row and third row represent situations for V > 0 and
V' < 0, respectively. The arrow represents direction of electron tunneling.

This is presented next.

7.8.1 Lateral ohmic contact: transmission-line model

Consider the situation of Fig. 7.26. It depicts two ohmic contacts applied to a thin n* layer on
a p-type substrate. When a voltage is applied to one ohmic contact with respect to the other,
current flows down one contact, then laterally through the n™ layer and then up the other contact.
The current is confined to the n™ layer due to the presence of the PN junction. This kind of
lateral contact structure is widely used in devices. Of this type are, for example, the source and
drain contacts of a MOSFET and the contacts to the base of a bipolar transistor.

An equivalent circuit model of this structure is shown in the bottom diagram of Fig. 7.26. We
can think of this as three resistances in series. Two are associated with the contacts and one with
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Figure 7.25: Experimental measurements of ohmic contact resistivity for PtSi and W ohmic contacts on n-Si as
a function of doping level [S. Swirhun, PhD Thesis, 1986,

the lateral n™ region in between. The lateral contact resistance, R., lumps the resistance all the
way from the ohmic metal to the leading edge of the contact (dashed line). We wish to derive an
expression for R, in terms of the relevant parameters. The ohmic contacts are characterized by
a contact resistivity p.. The length of the contacts is L. and their width is W, (into the paper).
The nT layer has a sheet resistance ..

It is clear that R is not given by an expression like Eq. 7.48. That expression implicitly
assumes that the current density is uniform across the metal /semiconductor interface. Looking at
Fig. 7.26, the situation here is quite different. Because of the finite resistance of the semiconductor
layer, the current will tend to bunch on the leading edge of the contact. The current density will
be higher there and drop as we proceed further away from that edge. If the contact is long
enough, the current density will become negligible sufficiently far away from the leading edge of
the contact. Clearly, the resistance of this contact (as defined above) is higher than given by
Eq. 7.26 on two counts. First, current only flows through a fraction of the contact area. Second,
there is a contribution to the contact resistance that comes from semiconductor.

This is an interesting problem that is best solved through what is called a transmission-line
model. This is an effective way to analyze distributed problems such as this one. A transmission-

line equivalent circuit of the contact structure on the right (from the dashed line on towards the
right) is shown in Fig. 7.27.
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Figure 7.26: Top: schematic of current flow in lateral ohmic contact structure. Bottom: equivalent resistance
model defining the contact resistance.
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Figure 7.27: Transmission-line equivalent circuit model for ohmic contact on right (from dashed line) of Fig.
7.26.

This electrical problem can be described by a distributed resistance network as shown in Fig.
7.27. A pair of resistors is associated with each elemental length of the contact dz. In each
segment, we can define a differential contact conductance as dg. = (W,/p.)dz (the conductance
of the elemental contact vanishes as dz goes to zero) and a differential lateral semiconductor
resistance as drs = (Rg,/W.)dz. We assume that a current I flows into this contact structure
from the left. 2 = 0 is the leading edge of the contact and we place its voltage at V(0). The
contact has a length L.. At the other end of the contact, no current can emerge and I(L.) = 0.
With these definitions, the contact resistance is R. = V(0)/I. In order to get R,, we need to
solve for V(z) and I(z).

At location z, Kirchoff voltage and current laws vield, respectively:

Rsh
W,

dV(z) = —I(z)drs, = —I(z)=Zdz (7.49)
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W.
dI(z) = -V (z)dg. = -V (z)—dz (7.50)
From this, we can write:
dV(ﬁ')) e R‘gh
B I(x) WL (7.51)
dl(z) W,
== —V (=) 3 (7.52)

Taking a derivative on both sides of Eq. 7.52 and substituting Eq. 7.51 yields:

=0 (7.53)

dPI(z) I(z)
dz? L2

Here, we have defined the transfer length as:

Pe
L= ;
t =\ R, (7.54)

It is best to write the solutions to this second order linear differential equation as a sum of
hyperbolic functions:

H i

T ) (7.55)

I(x) = Iy sinh( Li) + I3 cosh(
t
We obtain coefficients I; and Iy by matching boundary conditions 1(0) = I and I(L.) = 0 to
finally obtain:

T

Lt) — coth(=2) sinh(i

I(x) = I[cosh( it E ]

(7.56)

Inserting this result into Eq. 7.52 yields the voltage distribution along the semiconductor:

WV P(:] Esh

Viz) = W

L :
I[coth(-L—:) CGSh(Lit) - sinh(i}] (7.57)
At x = 0, this equation yields:

V(0) = vV PeRsh

L.
W B COth(L_t) (7.58)

The contact resistance of this contact, defined as V(0)/T is:
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Figure 7.28: Evolution of contact resistance with contact length in a lateral ohmic contact.

vV P(:j Esh L,
¢ = ——— coth(=— :
B W coth( i ) (7.59)

We find that, in general, the contact resistance of a lateral contact depends on the contact
resistivity itself, the sheet resistance of the semiconductor layer underneath and the length and
width of the contact. Note how R, ~ 1/W,, as it should be.

Fig. 7.28 sketches the dependence of R. on L, the length of the contact. There are two
interesting limits to this expression. If the contact length is much shorter than the transfer length,

L. < Ly, we can consider this a short contact and R, becomes (see Taylor series expansion of
cothz around z = 0 in Appendix D):

R~ P (7.60)

In this limit, the resistivity of the contact dominates the contact resistance and the contri-
bution to this from the resistance of the semiconductor is negligible because the contact is very
short. Notice how in this case, the current density is uniform across the contact.

The other limit is that of the long contact. In this case, L. > L;. Since for z > 1, cothx ~ 1,
we have:

Pe
W.L

~
o =

(7.61)

In this case, the contact resistance scales with the transfer length L; and is independent of
the actual contact length. In this limit, the transfer length becomes the effective contact length.
For long contacts, the current and the voltage drop exponentially away from the leading edge of
the contact. After a few transfer lengths, there is no more current left and the actual length of
the contact is irrelevant.
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Figure 7.29: Energy band diagram of an ohmic contact to an n-type semiconductor with excess hole concentration
in its vicinity. The electric field associated with the metal-semiconductor interface effectively ”pulls” holes towards
it where they recombine.

Understanding the scalability of lateral ohmic contacts is important in device design. It is
obvious that one does not want to design a contact that is longer than two or three transfer
lengths as this does not reduce the contact resistance but it increases the area that the contact
consumes.

7.8.2 Boundary conditions imposed by ohmic contacts

We are now ready to justify two assumptions made elsewhere in this book about ohmic contacts.
The first one refers to our statement that throngh an ohmic contact, we can ”grab” on the majority
carrier Fermi level at the semiconductor surface. Fig. 7.24 justifies this assertion. It is clear in
this figure that if the contact resistance is very small, only a small split of the Fermi level between
the metal and the semiconductor is required to support a sizable current. In consequence, if the
Fermi level of the metal is pulled up or down by a battery, the Fermi level of the semiconductor
is brought along with it.

The second assumption refers to the excess minority carrier concentration at an ohmic con-
tact. We assumed in Ch. 5 that it is always zero, or in other words, that the minority carrier
concentration is in equilibrium at an ohmic contact. This is now easy to understand. Fig. 7.29
shows the energy band diagram of an ohmic contact on an n-type semiconductor in a situation
where there are excess holes in the neighborhood. The electric field associated with the metal-
semiconductor junction pulls holes from the semiconductor towards its interface with the metal
where they recombine due to the high density of defects and dangling bonds. In consequence, in
the vicinity of the ohmic contact, the hole concentration is never too far away from its equilibrium
value. The same applies for electrons in a p-type ohmic contact.
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7.9 Summary

e At the interface of a typical metal-semiconductor junction, charge redistribution takes place.
A consequence of this is that a depletion region is created on the semiconductor side. A
second consequence is that an energy barrier to majority carrier flow appears between the
metal and the semiconductor.

e Under bias, the barrier that blocks carrier flow from the semiconductor to the metal is
modulated by the applied voltage, while the barrier in the reverse direction is unchanged.
This results in the rectifying behavior of the Schottky diode.

* In most circumstances, current in a Schottky diode in forward bias is dominated by the
process of emission of carriers into the metal.

¢ Under bias, the extension of the depletion region in the semiconductor of a Schottky diode
is changed by the applied voltage. This produces a capacitive effect.

e Under most circumstances, a Schottky diode under bias does not store minority carriers.
This is the key reason for their fast response to dynamic signals. The dominant time
constant of a Schottky diode is the RC time constant of the depletion capacitance and the
total series resistance.

e Practical design of Schottky diodes attempts to achieve a balance among a small time
constant, sufficient forward conduction, small reverse current, high maximum reverse voltage
and small area. The challenge to the microelectronics device designer is to accomplish this
constrained by the use of established processes. This is because dedicated processes are
rarely available to the fabrication of Schottky diodes.

e Good ohmic contacts present a negligible barrier to current flow in and out of the semicon-
ductor. The key to accomplish this is to heavily dope the semiconductor directly underneath
the metal. The higher the doping level, the lower the contact resistivity, the most important
figure of merit of an ohmic contact.

e In lateral ohmic contacts, the sheet resistance of the semiconductor layer underneath the
contact plays a role. There is a transfer length beyond which longer contacts do not result
in smaller contact resistance.

7.10 Further reading

Metal-Semiconductor Contacts and Devices by S. S. Cohen and G. Sh. Gildenblat,
VLSI Electronics Microstructure Science, Vol. 13, Academic Press 1986 (ISBN 0-12-234113-9,
TK7874.V56 vol. 13). This high-level book is entirely dedicated to Schottky structures. Several
chapters are of interest to us. Ch. 2 describes a generalized theory of transport in the metal-
semiconductor junction including drift and diffusion, tunneling, and minority-carrier injection.
Ch. 3 presents experimental techniques to determine the Schottky barrier height. Ch. 4, 5, and
6 deal with ohmic contact characterization and technology. Although the technology portions are
quite dated, the book is still a useful reference for fundamental concepts.
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Figure 7.30: Schottky barrier height of various metals on n-type Si as a function of the metal work function.
The Schottky-Mott relationship (Eq. 7.3) is indicated [from R. T. Tung, Mat. Sci. and Eng., R35, 1 (2001)).

AT7.1 Non-ideal Schottky barrier height of metal-semiconductor
Jjunctions

When discussing the band line up of a metal/n-type semiconductor junction in thermal equilib-
rium in Sec. 7.2.2, we concluded that the Schottky barrier height is given by the difference in
the work function of the metal and the electron affinity of the semiconductor (Eq. 7.3). This is
very relevant from an engineering point of view as it suggests that by appropriate selection of the
metal, a wide range of Schottky barrier heights should be available to the device designers.

The reality is somehow different. This can be seen in Fig. 7.30 that graphs the experimental
Schottky barrier height of metal-semiconductor junctions prepared with different metals on n-
type Silicon. This figure shows that ¢ g, tends to increase as Wy, increases but the dependence
is significantly weaker than expected from simple theory (line). A wide distribution of Schottky
barrier heights is available by using different metals but the range is much narrower than expected
from the Schottky-Mott relation.

Understanding at a fundamental level the situation depicted in Fig. 7.30 is an active topic
of research in modern solid-state physics. In this book, we cannot do justice to the various
theories that are currently under consideration. Nevertheless, it is important for device designers
to develop an appreciation of some of the critical issues involved and how to think about energy
band line ups that are not ideal (as defined in the main body of this chapter). This is the purpose
of this Advanced Topic.

When one stops to think about it, it is not surprising that the simple approach to predicting
Schottky barrier heights described in Sec. 7.2.2 fails. Through Eq. 7.3, the Schottky barrier
height, which is a purely interfacial property of a metal and a semiconductor, is calculated using
information from the bulk characteristics of its constituents. This approach ignores the very
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F igure 7.31: Models for metal-semiconductor interface. Left: atomistic model showing interfacial bonding,
dangling bonds on either side and lattice deformation that can extend a few monolayers into each material. Right:
macroscopic model showing a fixed dipole of charge at the interface.

presence of an interface between these two materials. It is right at that interface where everything
happens.

Just about every metal under almost any circumstance reacts in some form when deposited
over a semiconductor. In careful experiments it has been observed that under the right con-
ditions, the Schottky barrier height of a given metal-semiconductor junction depends on the
cleaning process, the deposition and post-deposition annealing techniques that are used as well
as the surface orientation of the semiconductor and the thickness of the metal. This strongly sug-
gests that the details of the atomic bonding and interfacial structure of the metal-semiconductor
interface should affect the Schottky barrier height. Atomistic calculations of metal-semiconductor
interfaces actually confirm this. How can we understand this?

The interface between a metal and a semiconductor is actually a messy affair. A conceptual
sketch is shown on the left of Fig. 7.31. This figure illustrates how, in general, the semiconductor
and the metal lattices are different (in fact, metals are often polycrystalline) and as a result, atoms
do not precisely line up across the interface. Right at the boundary, some metal-semiconductor
atomic bonds are formed leaving some dangling bonds on either side. Also, the erystal lattices
on both sides get deformed to a few monolayers in depth into each material. It is then reasonable
to expect that the interfacial region of a metal semiconductor junction ends up with different
electronic properties than the bulk of either material.

From an electrical point of view, this relatively disorganized interface region when averaged
over enough area is very likely to produce a charge dipole across the interface (right of Fig. 7.31).
This does not mean that there is an overall loss of charge neutrality but that there is a slight
separation of positive and negative charge at the interface (electrons and core ions) with a few
more electrons ending up on one side than on the other. The sign and strength of this dipole
depends on the atomic details of the interface.

A dipole of charge at the interface results in a sharp electric field confined to a small region
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a) ideal b) reduced Schottky barrier ¢} enhanced Schottky barrier

Figure 7.32: Energy band diagrams of metal-semiconductor interfaces in the presence of interfacial charge dipole.
Left: ideal case; middle: charge dipole reduces Schottky barrier height; right: charge dipole enhances Schottky
barrier height.

and a small but finite electrostatic potential buildup that affects the overall band line up. From
simple electrostatics, a charge dipole with a density N5 and an average charge separation d gives
rise to a potential buildup given by:

By 20008 (7.62)
€

We can put some numbers to this expression. If we have a charge dipole density of 1013 em—2
with an average charge separation of 1 nm and we use the permittivity of Si, the potential build-
up at the interface ends up being 0.16 V. This is well in line with the discrepancies that we
see between the simple theory and the experiments in Fig. 7.30. Note that a dipole density of
10" ¢m~2 is not that large when compared with the atomic density of a typical semiconductor
surface. For example, in (100) Si, the atomic density is 6.7 x 101 em 2,

How is the band diagram modified if there is a charge dipole at the metal-semiconductor
interface? This is shown in Fig. 7.32. Depending on the sign of the interfacial dipole, the
Schottky barrier height can be reduced or enhanced with respect to the ideal value. As we have
studied before, in the absence of a charge dipole, the difference between vacuum levels in the
metal and the semiconductor of a metal-semiconductor junction in thermal equilibrium is given
by the difference in work functions. The Schottky barrier height is then the difference between
the metal work function and the electron affinity (left figure). Depending on the sign of the
interfacial charge dipole, the potential build up across the semiconductor will have to adapt so
that the overall vacuum level difference ends up unchanged. This can then reduce (middle figure)
or enhance (right picture) the Schottky barrier height with respect to the ideal value.

The key lesson from this section is that the Schottky barrier height of a metal-semiconductor
system is strongly affected by the details of the interfacial region and should be measured in a
practical situation. This understanding also opens the possibility for interface engineering as a
way to tune the Schottky barrier height of a metal-semiconductor pair.

A final observation. Remember how for a given metal-semiconductor pair, we concluded
in Sec. 7.2.2 that the Schottky barrier height on the n-type semiconductor and on the p-type
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semiconductor add up to the bandgap (Eq. 7.7). The presence of a dipole of charge at the
metal-semiconductor interface is evidently a property of the metal and the semiconductor and
the details of fabrication and has nothing to do with the doping type of the semiconductor. As a
result, the shifts that the interfacial charge dipole introduces are identical for both semiconductor
types and they cancel out when the Schottky barrier heights are added. Eq. 7.7 remains valid.

AT7.2  Drift-diffusion model for I-V characteristics

This Advanced Topic presents the drift-diffusion model for the I-V characteristics of the Schottky
diode. Here we think in terms of a metal /n-type semiconductor Schottky diode that is in forward
bias. The drift-diffusion model assumes that the rate limiting step to the current in the device
is the process of electron transport across the SCR and not the process of electron emission into
the metal.

Under forward bias, as discussed in the main body of this chapter, diffusion prevails over drift
in the SCR and there is a net flow of electrons from the body of the device, across the SCR
towards the metal /semiconductor interface. If we continue to neglect the role of minority carrier
holes, the diode current is all supported by electrons and, in general, can be written as the sum
of its drift and a diffusion components:

qn d¢  dn

dn
Jp = T = quenE + qDEE = ch(_ﬁ@ - E) (7.63)
We can multiply both sides of this expression by exp(—ﬁ%), to get:
9, _ qn d¢ q¢,  dn _ 49
d qo
- . — [nexp(— 22 .64
4Dl exp(—22) (7.64)
We now integrate across the SCR;:
% qo oINS
Jg./0+ exp(—ﬁ)d:c =qD.n exp(~ﬁ)|of (7.65)

where we have brought J; out of the integral because in steady state, the total current is constant
in space.

To perform the integral on the left-hand side, we need an expression for ¢(z). For a general
case under bias, starting from Eq. 7.13, we can easily write:

s e
o(x) = —(dwi — V)(:l_z =5 i—z i) for0<z<azy (7.66)
2
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Integrating this does not yield an analytical solution. However, since the biggest contribution
to the integral is around 2 = 0, we can expand ¢(z) in that region:

2z
o(z) ~ —(dp — V(1 - x—I) around z = 0 (7.67)
d
The integral can now be easily performed:
kTay gl — V)

T4 _q_d’ _
/0+ exp( kT)dm A (7.68)

2q(ei — V) "0 kT

For the right-hand side, we note that 2 = x4 is the edge of the depletion region where ¢(z4) = 0
and n(zq) = Np. « = 0 is the metal-semiconductor interface where ¢(0%) = —(¢p; — V). Under
the drift-diffusion approximation, the electron concentration at z = 0T is unperturbed from
equilibrium. This is consistent with the notion that the rate limiting step is electrons reaching
the interface. Electron emission into the metal can happen at much faster rate. We can then use
the result from thermal equilibrium that was given in Eq. 7.20. all together, we have:

96
kT

—qV
)&% = gDeNp(1 — exp — (7.69)

qDenexp(— T

Assembling now Egs. 7.65, 7.68 and 7.69 and solving for J;, we get:

2q(¢pi — V)Np . —4¥Bn qV
——:——hcexp T ( )

Ji = qpe (7.70)

where we have again used Eq. 7.19 as well as 7.21.

Multiplying by the area A; allows us to formulate again the I-V characteristics in the classical
rectifying form of Eq. 7.35.

The key dependencies of our result in Eq. 7.70 are very much similar to those of the thermionic
emission model given by 7.34. It has the same rectifying voltage dependence and the same
exponential dependence on the Schottky barrier height. Actually, if we look at the reverse bias
current predicted by this model the result is very intuitive. For large enough reverse bias, Eq.
7.70 simplifies to:

o ———
2q(¢pi — V)N ~¢¥Bn
7 ':—q;u-e\f q(¢pi — V)I D . exp —3#B

p T ~qpte|Emaz|n(0) (7.71)

The reverse bias current is entirely supported by drift at the metal-semiconductor interface and
it then takes the classic drift current expression with the electron concentration and the electric
field computed at = = 0.

It is interesting to look at the ratio of the current predicted by the drift-diffusion model and
the thermionic emission model. Using Eqs. 7.70 and 7.34, after some simple algebra we can find:
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Jt(DD) = 4ﬂe|gma.z|
Ji(TE) Uthe

(7.72)

This is really interesting and also makes good sense. The ratio of the currents can be phrased
as a ratio of velocities. In the case of the drift-diffusion model, the velocity that matters is the
drift velocity at the metal semiconductor interface. For the thermionic emission model, it is a
quarter of the thermal velocity of electrons that matters. Whichever one of these velocities is the
smallest limits current transport. Since the peak electric field in a Schottky diode can be quite
high even under strong forward bias, in materials in which p. is relatively high, it is often the
case that thermionic emission is the most restrictive process. The thermionic emission process is
therefore the appropriate model to use to describe the I-V characteristics of Schottky diodes.

Exercise 7.5: Evaluate the ratio of the current obtained in an Al/n-Si Schottky diode with Np =
10'" em™* at a forward voltage of 0.5 V at 300K by the drifi-diffusion and thermionic emission
models.

We assume that the electron mobility in the SCR is identical to that of a QNR of the same doping
level. Therefore, for this doping level, p, ~ 700 ¢m?/V.s.

From Exercise 7.3 we know that for this Schottky diode at this forward voltage, the peak electric
field at the Schottky interface is [Emax| = 3.4 x 10* V/em.

We also know that the thermal velocity for electrons at 300 K is about vpe ~ 2.0 x 107 cm/s.

All together, then:

J(DD) _ 4,ue£mm — 45 100 em?[V.s x 3.4 x 104 V/em

J(TE) Vthe 2.0 x 107 em/s

=4.8

Under these conditions, the drift-diffusion model predicts a current that is about 4.8 times higher
than the thermionic emission model. Therefore, the process of emission from electrons into the
metal is the rate limiting step and the thermionic emission model is the correct one to use here.
This finding is consistent with the verification of the validity of the Bethe condition that was
carried out in Exercise 7.4.

AT7.3  Equivalent circuit model of Schottky diode for circuit
design

In the modeling of Schottky diodes for circuit CAD, the equivalent circuit model of a PN diode is
often used. This works well because the behavior of these two devices is very similar. Referring
to Fig. 6.33, in its simplest form, this circuit consists of an ideal diode, a capacitor in parallel
with it, and a series resistance.

Several of the model parameters in the diode CAD model have a similar meaning when
describing the PN diode and the Schottky diode. Referring to Sec. AT6.2 that describes the
equivalent circuit model for a PN diode for circuit CAD, this is the case for model parameters
N, RS, IS, CJO, VJ, M and BV.

Other model parameters take on a different meaning due to the subtle difference in physics



462 Integrated Microelectronic Devices: Physics and Modeling

name | parameter description units | ideal value
IS saturation current A -
N ideality factor . 1
EG | Schottky barrier height A% -
RS series resistance 2 -
CJO | zero bias depletion capacitance F -
A'S ) built-in potential 7% -
M grading coefficient - 0.5
XTI | saturation current temperature exponent i 2
TT | transit time 5 0
BV | breakdown voltage %4 =

Table 7.1: Summary of simplest set of Schottky diode model parameters for circuit CAD. Ideal value refers to
the simple Schottky diode described in these pages.

between both diodes. For example, looking at the expression of IS of Eq. 6.141, and comparing
it with I for the Schottky diode derived in Eq. 7.36, it is clear that model parameter EG plays
the role here of the Schottky barrier height. Its value should therefore be smaller than in a PN
diode where it plays the role of the bandgap. Also, model parameter XTI ideally should have a
value of 2, which tends to be smaller than the values needed in PN diodes.

The biggest difference between the Schottky diode model and the PN diode model is in
parameter TT (transit time). This captures minority carrier storage in the PN diode which
does not exist in an ideal Schottky diode. Therefore TT should be set to zero. Actual Schottky
diodes in strong forward bias do show some minority carrier effects. Describing this accurately
will require the introduction of a finite value to TT.

Table 7.1 summarizes the basic set of model parameters used to describe Schottky diodes in
a circuit CAD environment. When appropriate, their ideal values are also given.

As in the case of the PN diode, additional model parameters are found in more advanced
models to describe non-ideal leakage currents in reverse bias, temperature dependence, parasitic
diode isolation, and the noise characteristics. Also. scaling parameters are introduced to scale
the diode geometry from the "nominal” device that was experimentally characterized to extract
the model, to any other device size.

AT7.4 Switching characteristics of Schottky diode

A real uniqueness of Schottky diodes is their fast switching characteristics. In many large-signal
applications, Schottky diodes must quickly switch from a strong forward bias with substantial
current flow to a high reverse bias characterized by negligible current, and vice versa. How quickly
a Schottky diode is able to switch between these two states is a key figure of merit for many large
signal applications.

We studied these kinds of transients in the PN diode in Sec. AT6.3. We learned that they
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Figure 7.33: Switching transients in a Schottky diode. In response to a sudden switch in the voltage applied to
the diode, the diode current shows spikes that decay with a characteristic time constant R.C.

can be quite slow due to minority carrier storage. Since this is absent in a Schottky diode, these
devices can switch much faster. This makes them preferable in many applications such as power
management and ICs for automatic test equipment.

An appreciation for the limiting mechanisms can be obtained by considering the simple switch-
ing example depicted in Fig. 7.33. In this exercise, we have a Schottky diode switching from a
forward voltage V; to a reverse voltage V,, and back (note that the way the voltage is defined
in Fig. 7.33, V; is a negative number). The current through the diode behaves as shown in the
figure. Right after the switch-off transient (from Vr to V}.), the current through the diode shows
a prominent negative spike that decays away in an exponential way. Similarly, right after the
swith-on transient (from V, to V), the diode current also exhibits a prominent positive spike that
also decays away in a exponential fashion. In order to calculate the magnitude of the current
spikes and, more importantly, the time constants of the exponential decays, we need to examine
in detail the switching transients. This is best done by substituting the diode for its equiva-
lent circuit model, as shown in Figs. 7.34 and 7.35 for the switch-off and switch-on transients,
respectively.

Fig. 7.34 shows the details of the current paths during the switch-off transient. At ¢t = 0™,
the diode is in forward bias with a voltage V across. There is then a forward-bias current flowing
through the diode of a magnitude Iy. This current produces an ohmic drop in the series resistance.
As a result, the junction voltage is Vi —IfRs. As V switches from V} to V;., the junction voltage
cannot abruptly change and remains with a value Vi — IyR,. Hence, at t = 07 the resistor has a
voltage Vy — Iy R; — V. across. The polarity of this voltage is reversed with respect to its sign at
t =07. Hence, the current flowing through the diode terminals at ¢ = 0+ is:

i
I(t=0")~ ?”—R‘i +1; (7.73)

]
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Figure 7.34: Switch-off transient in a Schottky diode. Left: for t = 0~. Right: at t = 0T,

Notice that this current is negative, i.e. it is a reverse current.

As t > 07, the charge storage element associated with the junction starts discharging through
Rs as well as through the diode. However, due to the exponential I-V characteristics of the
diode, the diode current path gets shut off very quickly. After that, the junction charge element
discharges only through the series resistance R, until it attains its final value V;.

A rigorous analytical solution of this switching event is complicated because of two reasons.
The first one is the initial fast discharge through the diode. Additionally, as we studied above,
the junction charge in a Schottky diode depends on voltage. If @) was voltage independent, past
a short initial transitory, the time evolution of the diode current would be exponential with a
characteristic time constant of a value RsC, where C is the associated junction capacitance. With
() changing with voltage, the decay is not a pure exponential. Still, the characteristic time of the
current decay is of the order of R, times the average C'.

In the switch-on transient (Fig. 7.35), V switches from V. < 0 to V. At ¢ = 07, the capacitor
associated with the junction has a voltage V, across and the current going through the diode is
the saturation current —I, a very small value. At ¢t = 0T, the voltage across the diode changes
abruptly to Vi, but the junction voltage cannot change. Hence, a voltage Vy — V. appears across
the series resistance of the diode with the polarity indicated in the figure. This produces a current
of a magnitude:

I(0%) ~ % (7.74)

Since the junction remains reverse biased, this current spike flows into the junction capacitance
that as a result starts charging up. As it does, the voltage across the junction becomes less
negative, the voltage across the resistor is accordingly reduced and the charging current is reduced
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Figure 7.35: Switch-on transient in a Schottky diode. Left: for t = 0~. Right: at t = 0%,

as well. This is a typical RC-dominated transient characterized by an exponential evolution with
a time constant equal to R,C. Again, the fact that C' depends on the junction voltage results in
a transient that is not a pure exponential.

The result of this detailed analysis is that the Schottky diode can respond to large-signal
voltage switching in the scale of R;C. Fast switching demands minimization of both € and Ry
This contrasts with the switching times of the PN diode, which in addition to this RC time
constant, are delayed by the need to provide or eliminate the stored minority carriers in the
quasi-neutral regions.

Exercise 7.6: Simulate a switching transient of a Schottky diode in SPICE, as sketched in Fig.
7.33. The forward voltage is +0.45 V. The reverse voltage is —3 V. The SPICE parameters
of the diode are: 1IS= 5.5¢ — 13, N= 1.03, EG= 0.89, RS= 11, CJO= 3.24e — 13, VJ= 0.5,
M= 0.339, XTI= 2, and TT= 0 (units in Table 7.1). Extract the characteristic time constants
of the transients and compare them with simple estimates.

Fig. 7.36 shows the output obtained from HSPICE for a case in which there is a delay time of
2 ps, the reverse voltage is applied for 10 ps and the forward voltage is applied for 10 ps. Both
turn-on and turn-off transients exhibit a near exponential dependence. For the turn-off transient,
the extracted characteristic time constant is about 4 ps. The R,C time constant expected from
the junction capacitance at V = 0.45 V, is about twice that, 7.8 ps. This suggests that the diode
itself is effective in contributing to the discharge of the capacitor at the beginning of the transient.

The turn-on transient is characterized by a time constant of about 2 ps. The expected value of
the R,C product corresponding to V = -3 V, is 1.9 ps. The excellent agreement reflects the fact
that in reverse bias, the diode does not prevent the charge of the capacitor.

Right after the transients, the terminal currents are about 300 mA. This agrees with the expected
value of 3.45/11 = 0.31 A.
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Figure 7.36: Switching transients in a Schottky diode as simulated by HSPICE (see exercise 7.6).

Problems

* 7.1 Consider a thin Si sample with two metallic contacts on each side, as shown in the figure
below. The structure is at room temperature in thermal equilibrium and the doping is Np =
108 em~3 everywhere. The Schottky barrier height of both metal-semiconductor junctions is
q¥Bn = 0.7 V.

0 v2 1 x
For the following three situations below, 7) calculate the electron and hole concentrations and
the clectrie field at the center of the sample = ¢/2, i) sketch the corresponding energy
band diagram throughout the structure, and iiz) compute the built-in potential of each metal-
semiconductor junction.
a) For a sample thickness of t = 5 yun.
b) For a sample thickness of t = 1 ym.

¢) In the limit of a very thin sample.

7.2 The Mott diode consists of a metal-semiconductor junction in which the semiconductor layer
immediately adjacent to the interface is undoped. as indicated in the figure below. Consider
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a case in which Wyy > W, where W, refers to the work function of the n-type bulk.

metal

— I

undoped th

rd

n-type

a) Sketch the space charge, p,, electric field, £,, electrostatic potential, ¢,, and energy band
diagram in thermal equilibrium.

b) Under the depletion approximation, calculate expressions for p,, £,, and ¢, as a function of
x in the semiconductor. Leave everything in terms of x4, the depletion region extension
into the n-type region.

c) Compute an expression for x4 in terms of material parameters,
d) Modify the expressions for p, £, ¢, and z4 for forward and reverse bias.

e) Derive an expression for the C-V characteristics. Sketch.

You have received a Si Schottky diode from your research supervisor with the instructions
of measuring the Schottky barrier height. This is a rather novel device fabricated by some
collaborators of your supervisor using an exotic metal. You are given a single sample.

You have a lot of experience in this procedure. Even though it was not asked of you, you
start by carrying out C-V measurements at room temperature. Your plan is to proceed with

temperature-dependent I-V characteristics from which you will extract the Schottky barrier
height.

Tragically, as the C-V trace comes to its end, the device blows up. You panic. Another
student that is working in your lab suggests that you can extract the Schottky barrier height
from the C-V characteristics that you have just obtained. Through a microscope vou measure
the area of the metal as 20 x 20 um?2. You forgot to ask whether the substrate is n-type or
p-type. Below are your measurements. V represents the voltage of the metal with respect to
the semiconductor.
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Extract the Schottky barrier height from the available information.
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« 7.4 Consider an ideal metal/n-type semiconductor junction. If without changing anything else,
you change metals so that the Schottky barrier height gep, goes up, how do the following
device parameters change? Provide reasons for all your answers.

Current at a certain forward voltage, I(Vy): T ! no effect. it. depends
Capacitance at a certain forward voltage, C'(Vy): ) | no effect it depends
Activation energy of saturation current, E,(Ig): T 1 no effect it depends

Charge in depletion region in equilibrium, Qq(V =0): 1 1 no effect it depends

Dynamic resistance at a certain forward current, ry(fs): 1 1 no effect. it. depends

7.5 A certain n-Si Schottky diode is characterized by the following set of SPICE parameters:
IS=9x10" 4, N=1.00,EG =095 RS =200, CIO=3x10"3 F, VI =08V,
M=05 XTI=2 TT =0, BV =20 V, all determined at 300 K.

a) Carry out SPICE simulations of the I-V characteristics of the device at room temperature
and plot |I| vs. V in a semilog scale from V=-5V toV=05V.

b) Carry out I-V simulations at different temperatures (I' = 300, 325, 350, 375, 400 K).
! For each temperature, extract Is by extrapolating the forward-bias characteristics to
V = 0. Make an Arrhenius plot of Ig/T? vs. 1000/T. Extract the Schottky barrier

height from this plot. Compare with EG.

c¢) Perform SPICE simulations of the C-V characteristics at room temperature. Plot C vs.
V in a linear scale from V= -5V to V =05 V.

d) Perform SPICE simulations of a switching event as in Fig. 7.33 in the notes from V =
045 V to V = =3 V and back. Extract the characteristic time constants of both
switching transitions and compare them with simple estimations carried out as in the
notes. Also compare extract the peak currents at + = 07 and compare with simple
calculations.

7.6 ! Consider an integrated Al/n-Si Schottky diode implemented in a bipolar process, as shown
on the right of Fig. 7.22. The area of the metal /semiconductor interface is 40 pn?. The total
area of the n-tub is 800 um?. The doping level in the n-region is 1 x 107 em 3, The doping
level in the substrate is 1 x 10'® em =2, qpp,, for Al on n-Si is 0.68 eV/.

a) Derive values for standard model parameters for this diode (except RS). Include param-
eters to characterize the capacitance to the substrate. Model this as an asymmetric
p-n diode with ¢; = 0.9 V, as discussed in Ch. 6. Refer to the new parameters as
CJOS.VJS, and MS.

b) Compute and sketch the I-V and C-V characteristics of the diode for a wide range of
voltages. Ignore parasitic effects. What is the maximum positive voltage that can be
applied to the diode? What about the maximum negative voltage?

7.7 ? Consider an ideal metal /n-type semiconductor junction at room temperature. The metal has
a work function Wy = 4.05 eV, the semiconductor is Si and is doped with Np = 107 em—3,

"You will need to have studied Ch. 7 before attempting this problem.
*You will need to study the contents of Ch. & before attempting to solve part d) of this problem.
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a) Sketch to scale the energy band diagram in equilibrium.
b) Compute the built-in potential.
c¢) Compute the electron and hole concentrations right at the metal/semiconductor interface.

d) Estimate the spatial extent of the space charge region in the semiconductor.

7.8 Consider a parallel-plate capacitor with Al electrodes as sketched below. The separation
between the plates is 1 um.

metal
T dielectric or
Tum semiconductor
metal

Calculate the capacitance per unit area of this device when the following materials are utilized
as dielectric:

i) Si0O;

i1) intrinsic Si

i) n-type Si with Np =1 x 1015 ¢m =3
) n-type Si with Np =1 % 107 em =3

In all cases, the contact between the Al plate and the dielectric material is intimate.

* 7.9 A Schottky diode biased at a forward voltage of V' = 0.3 V has the small-signal equivalent
circuit indicated below at room temperature. The Schottky barrier height of this diode is

pp =09V,
1Q
26 Q 4 pF
V=03V
a) Estimate the current through the diode for V = —1 V. State any assumptions you need
to make.

b) Estimate the forward voltage across the diode for I = 100 mA. State any assumptions
you need to make.

c) Estimate the capacitance of the diode for I = 100 mA. State any assumptions you need
to make.
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7.10 Consider a Schottky-barrier diode on an n-type Si substrate. Suppose we increase the doping
level in the semiconductor Np. Nothing else is changed. Indicate the impact that this would
have on the parameters and figures of merit listed below.

Circle one: increase =1, decrease =, or no ef fect. For each item, give the reason for your

choice.
built-in potential, ¢;: T 1 noeffect
current at a certain forward voltage, I(Vy): T 1 noeffect
capacitance at a certain forward voltage, C(Vy): 1T 1 noeffect
switching time constant, 7: T | noeffect
equilibrium electron concentration at the T 1 noeffect

metal-semiconductor interface, n,(z = 0):

7.11 Consider a Schottky diode with a 10 um? active metal-semiconductor junction area and a
Schottky barrier height of 0.85 eV. This diode is forward biased with V = 0.6 V at room
temperature. Answer the following questions in the context of the thermionic-emission theory
of transport in the metal-semiconductor junction.

a) Calculate the electron concentration at the semiconductor side of the metal-semiconductor
interface.

b) Calculate the net electron velocity at the semiconductor side of the metal-semiconductor
interface.

c) Calculate the diode current.

7.12 A certain IC foundry offers a process that includes a "nominal” Schottky diode characterized
by the following set of SPICE parameters at 300 K: IS= le — 13, N= 1.0, EG= 0.9, RS= 10,
CJO=1le—12, VJ= 0.7, M= 0.5, XTI= 2, TT= 0, and BV= 10. This "nominal” Schottky
diode has a junction area of 10 um?®. Estimate the 3 dB bandwidth, fi4p = ﬁ%?L‘T&. of this
"nominal” Schottky diode at a forward current of 1 A and at 300 K.

7.13 Can the built-in potential of a metal-semiconductor junction in thermal equilibrium exceed
the Schottky barrier height? Explain your answer. Draw relevant energy band diagrams as
needed.

7.14 This problem is about making some early design decisions for a process for a Schottky diode
varactor (variable capacitor). The output of this exercise is a first-order sense of the Schottky
barrier height of the metal and the doping level of the semiconductor.

The room-temperature specifications of this varactor are: i) a capacitance per unit area at 0 V'
of C, =1 fF/pm?, and ii) the capacitance must change by a factor of 2 between 0 and 2 V'
(an 100% tuning range). To minimize power consumption, the Schottky diode must operate
in reverse bias.

Assume a metal/n-Si structure. Provide values of Np and gyp, that meet the design specs.
7.15 °. In a metal-semiconductor junction that uses a metal with a large Schottky barrier height,

an inversion layer of minority carriers might get formed at the metal-semiconductor interface
in thermal equilibrium. Consider such a situation on n-type Si with Np = 107 emn =3,

?Attempt this problem after studying Ch. 8
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a) Estimate the minimum Schottky barrier height for which this becomes a concern.

b) Sketch to scale the energy band diagram of such a metal-semiconductor junction in thermal
equilibrium, i.e., label all key energy differences and horizontal dimensions.

In order to improve the breakdown voltage of a Schottky barrier diode, a designer decides to

introduce a p* guard ring, as sketched below. This problem is about evaluating the penalty
in capacitance associated with this change.

10 10
- > -« —————»
A r
'-.\ .\\\. '.'
Schottky *27  schotiky (o8
barrier barrier ohmic
100 n n contact
v
"old" design “improved"” design

[all dimensions in microns]

In both designs, the Schottky barrier height is 0.8 €V, the doping of the semiconductor is
Np = 10'% em™3, and the wafer thickness is 100 um. The ohmic contact to the body of the
semiconductor is placed on the bottom surface of the wafer.

In the old design, the Schottky metal contacts the semiconductor over a 10 x 10 um? square

window. In the new design, the Schottky metal is also 10 x 10 pm?. The p* guard ring is

2 pm wide and is centered around the edge of the metal. The p™ region has a doping level of
N4 =10 em—3,

Assume that any minority carrier physics in the pn diode are dominated by the n-type sub-
strate. Answer all the following questions at room temperature.

a) Estimate the capacitance of the old design at V =0 V.
b) Estimate the capacitance of the new design design at V =0 V.
c¢) Estimate the capacitance of the old design at V = 0.5 V.

d) Estimate the capacitance of the new design design at V =05 V.

Consider a metal-semiconductor junction fabricated on a linearly graded n-type doped semi-
conductor. The doping distribution in the semiconductor is sketched in the figure below.
The grading coefficient is a. = = 0 denotes the metal-semiconductor interface. The Schottlky
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barrier of this structure is gpp.

Np

-~

Npo

0 X
This problem is about formulating the electrostatics of this problem under the depletion
approximation.

a) Derive an algebraic expression for the spatial dependence of the volume charge density
across the structure. Leave expression in terms of the depletion region depth. Sketch.

b) Derive an algebraic expression for the spatial dependence of the electric field across the
structure. Leave expression in terms of the depletion region depth. Sketch.

¢) Derive an algebraic expression for the spatial dependence of the electrostatic potential
across the structure. Explicitly state your choice of potential reference. Leave expression
in terms of the depletion region depth. Sketch.

d) Derive an expression that allows for the solution of the depletion region width in terms of
known parameters.

7.18 Consider a metal-semiconductor junction made out of Al on n-type Si with Np = 10'? em =3
at room temperature. For this system, the Schottky barrier height is qop, = 0.68 eV,

a) Compute the built-in potential for this structure. Sketch the energy band diagram in
thermal equilibrium indicating all key energies. Neglect carrier degeneracy.

Now consider inserting a thin p layer between the metal and the n-type semiconductor. The
doping level is N4 = 10'7 ern~# and the thickness is 2; = 0.1 pm.

b) Qualitatively sketch the volume charge density of this structure in thermal equilibrium.
Exploit the fact that Np > N4. Clearly label all instances of net electrical charge.
Explain.

c) Qualitatively sketch the electric field across the structure in thermal equilibrium, Explain.

d) Qualitatively sketch the electrostatic potential across the structure in thermal equilibrium.
Select as reference ¢ = 0 in the bulk of the n-type region. Explain.

e) Qualitatively sketch the energy band diagram of this structure in thermal equilibrinm.
Explain.

f) Based on what you see in the energy band diagram, at a given forward voltage-(metal
positive with respect to n-type substrate), would this structure have more or less current
than the structure in part a)? At a given forward voltage, would it have more or less
capacitance than the structure in part a)? Explain.

g) Caleulate the electric field at the metal-semiconductor interface in thermal equilibrium.



J. A

7.19

7.20

del Alamo

Consider a Schottky diode built on n-type Silicon, as sketched in the figure below. The
Schottky metal is Al which has a Schottky barrier height on n-type Si of qpp, = 0.68 V.
The doping level in the n region is Np = 101 ¢;n-3, In order to provide a good ohmie contact
to this diode, there is an n™ region with a doping level of Np+ = 10'? em=3. Al is also used
as the ohmic metal.

Schottky barrier ohmic contact

d

Al Al

+ G-
Vv

Consider this structure in thermal equilibrium at room temperature. Use Boltzmann statistics
to treat the n™ region.

a) Sketch a complete energy band diagram across the entire structure (from metal to metal).
Indicate the location of the Fermi level. Assume that both semiconductor regions are
wide enough to fully accommodate the depletion regions associated with the metal-
semiconductor junctions. Be neat in your sketch.

b) Compute the built-in potential of the metal-semiconductor Jjunction on the left.

c) Compute the built-in potential of the n-n* junction.

d) Compute the built-in potential of the metal-semiconductor junction on the right.

e) Is there a voltage difference across the terminals of this device?

The Bethe condition establishes the applicability of the thermionic emission model to the
current-voltage characteristics of a Schottky diode. This problem explores the voltage range
of applicability of the Bethe condition. Consider an WSis /n-Si Schottky diode at room tem-

perature. The Schottky barrier height for this system is g, = 0.64 V. The doping level of
the semiconductor is Np = 4 x 1017 ¢ =3,

Follow this approach:

a) In what bias regime, forward or/and reverse, does the Bethe condition become problem-
atic? Explain.

b) Estimate the mean free path of electrons in the semiconductor.

¢) Estimate the maximum forward and /or reverse voltage for applicability of the ETathe con-
dition in this diode.

d) At this(these) voltage(s), estimate the current density flowing through the diode.

473



474 Integrated Microelectronic Devices: Physics and Modeling



